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Floquet dynamics of a quantum system subject to periodic modulations of system parameters
provide a powerful tool for engineering new quantum matter with exotic properties. While system
dynamics are significantly altered, the periodic modulation itself is usually induced externally and
independent of Floquet dynamics. Here we propose a new type of Floquet physics for a Bose-Einstein
condensate (BEC) subject to a shaken lattice generated inside a cavity, where the shaken lattice
and atomic Floquet bands are mutually dependent, resulting in self-adapted Floquet dynamics. In
particular, the shaken lattice induces Floquet quasi-energy bands for the BEC, whose back action
leads to a self-adapted dynamical normal-superradiant phase transition for the shaken lattice. Such
self-adapted Floquet dynamics show two surprising and unique features: i) the normal-superradiant
phase transition possesses a hysteresis even without atom interactions; ii) the dynamical atom-cavity
steady state could exist at free energy maxima. The atom interactions strongly affect the phase
transition of the BEC from zero to finite momenta. Our results provide a powerful platform for
exploring self-adapted Floquet physics, which may open an avenue for engineering novel quantum
materials.

Introduction.—Floquet physics has been extensively
studied in solid state, ultracold atomic, and photonic
systems in recent years with significant theoretical and
experimental progress [1–14]. In particular, ultracold
atoms in periodically driven optical lattices provide a
highly controllable and disorder-free platform for study-
ing Floquet physics, yielding many interesting and im-
portant phenomena such as coherent ac-induced tunnel-
ing and band coupling [15–25], the realization of gauge
fields and topological bands [26–37], and the dynamical
control of expansion and quantum phase transition of
bosonic systems [38–41], etc. These previous studies on
Floquet physics assumed that system parameter modu-
lations (e.g., the shaking or moving optical lattices) are
determined solely by external driving and do not depend
on system dynamics, i.e., no back action of system Flo-
quet states on parameter modulations. Therefore a nat-
ural and important question is whether novel Floquet
physics can emerge when system Floquet dynamics and
parameter modulations are mutually dependent.

In this Letter, we address this important question by
studying Floquet dynamics of ultracold boson atoms sub-
ject to a shaken optical lattice generated inside an opti-
cal cavity. In the past several decades, the interaction
between atoms and static cavity fields with atom back
actions (no Floquet physics) have been well studied in
both theory [42] and experiment [43–53], showcasing rich
cavity quantum electrodynamics (QED) physics rang-
ing from few-body problems such as Jaynes-Cummings
model [54] to many-body physics such as the Dicke su-
perradiance [55, 56]. However, in these studies, the cav-
ity mode is static without periodic modulations such as
shaking or moving.

Here we propose to realize a cavity-mode-induced
freely evolving shaken lattice, utilizing transverse pump-
ing and a periodic modulation of the cavity field phase,
and study its mutual interaction with a non- or weakly in-

teracting Bose-Einstein condensate (BEC) inside the cav-
ity. While such shaken lattice generates Floquet bands
for the BEC, the back action of atom Floquet bands mod-
ulates the shaken lattice, leading to a dynamical superra-
diant phase, where atom Floquet bands and shaken lat-
tice are self-adapted. Such Floquet normal-superradiant
phase transition can be dramatically different from non-
Floquet one because of the coupling between different
Floquet sidebands. In particular, the interplay between
intra- and inter-sideband couplings may induce a hys-
teresis for the Floquet normal-superradiant phase transi-
tion of non-interacting atoms, yielding a completely new
mechanism different from the well-known interaction-
driven hysteresis [57–62]. Surprisingly, the steady state
of the atom-cavity system can stabilize at the free energy
maximum for dominant inter-sideband coupling because
of the non-equilibrium nature of Floquet states. With
increasing superradiant field, the Floquet band disper-
sion gradually evolves from a single minimum to doubly
degenerate minima, leading to a second-order phase tran-
sition of the BEC. Such transition can be significantly af-
fected by the interaction between atoms through the back
action, which changes the critical superradiant field, the
Floquet band dispersion and the condensate momenta
across the transition.

System.—As shown in Fig. 1(a), two schemes (A and
B) can be used to generate shaking cavity mode as
ẑE(x, ϕ) ∝ ẑ cos[k0x + ϕ(t)], with ẑ the polarization di-
rection and k0 the wavenumber. Scheme A employs two
electro-optic modulators (EOMs) [63], while scheme B
uses two mirrors synchronously driven by piezoelectric
transducers (PZTs) [64] to periodically and slowly [com-
paring with cavity free spectral range (FSR)] modify the
optical phase delay by ϕ(t) = ϕ0 + f cos(ω0t). The total
optical path length does not change, therefore the cav-
ity resonance frequency is not affected. We consider a
quasi-one-dimensional (the dynamics in other directions
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FIG. 1: (a) Schematic of the experimental setup. The cav-
ity is pumped by an external transverse laser (red block ar-
row), with cavity mode (red line) shaken by the two EOMs
or PZT-driving mirrors. A BEC is prepared inside the cavity
with a background lattice (blue line) generated by additional
lasers (blue block arrows). The shaken cavity mode may in-
duce inter-band couplings (dotted arrows) when the band gap
matches the shaking frequency. (b) Energy levels of the atom
and detunings of the cavity mode and pumping laser.

are reduced by a deep harmonic trap) BEC prepared in
such a cavity, which is pumped by an external transverse
laser. The pumping frequency ωp is close to the cavity
resonance frequency ωc, both of which are detuned far
below the atomic transition frequency ωa [see Fig. 1(b)].

After adiabatically eliminating the excited atomic
level, we obtain the Hamiltonian of the atom-cavity sys-
tem in a rotating frame with ~ = 1

H = (∆c − u)c†c+

∫
dxΨ†(x)Ha(t)Ψ(x), (1)

where c is the annihilation operator of the cavity photon,
and Ψ(x) is the matter wave field of atoms in the ground
state. ∆c = ωc−ωp is the cavity mode detuning, and u =
g20
∆e

∫
dxΨ†Ψ cos2(k0x+ϕ) is the detuning induced by the

atoms, which is typically small and negligible. The single

atom Hamiltonian is Ha(t) = − ∂2
x

2m + Vext(x) + V̂c(x, t),
with Vext(x) = ve cos2(k0x) an static external back-
ground lattice potential, which can be realized by ad-
ditional lasers [65]. It gives rise to a static tight-binding
atomic band structure ελ(qx) = Eλ+tλ cos(qx) with band
index λ and Bloch momentum qx ∈ [−k0, k0] [Fig. 2(a)].

V̂c(x, t) = −η c
†+c√
Na

cos[k0x + ϕ(t)] is the shaking poten-

tial induced by the cavity-assisted ac-Stark shift, with
η = Ωg0

√
Na/∆e the coupling strength, ∆e = ωa − ωp

the single-photon detuning, Ω and g0 the Rabi frequen-
cies of the transverse pumping laser and the single cavity
photon, respectively (Ω, g0 � ∆e), and total atom num-
ber Na.

Utilizing the expansion eif cosω0t =
∑
n i
nJn(f)einω0t

for cos[k0x+ϕ0 + f cos(ω0t)], we see V̂c(x, t) can change
the band structure by inducing a sequence of sidebands
(i.e. phonon-dressed bands) and couplings between them
(see Fig. 2). We choose ve, ω0, ϕ0 and f such that
the static s-band is near resonance with two-phonon-
dressed (ω ≡ 2ω0) p-band [Fig. 2(a)], therefore only
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FIG. 2: (a) Illustration of atomic static bands (solid lines)
and phonon-dressed sidebands (dashed lines). (b) Couplings

induced by V̂c in Eq. (2). The area of the Brillouin zone re-

duces in half by V̂c. The time-independent (time-dependent)
term induces intra-sideband (inter-sideband) couplings indi-
cated by solid arrows (dashed arrows).

these two bands need be considered for the calcula-
tion of new Floquet band structure ε̃λ(qx). The first
order expansion ∝ e±iω0t is far-off resonance and can
be neglected. The zero-th order expansion corresponds
to intra-sideband coupling, thus only terms containing
cos(k0x) are nonzero due to the symmetry of the Wan-
nier functions. Similarly, only terms with sin(k0x) are
nonzero for the second-order expansion ∝ e±i2ω0t that
couples s and p bands. In total, the cavity-assisted po-
tential can be written as [65]

V̂c = −η0
c† + c√
Na

[cos(k0x) + 4ηt cos(ωt) sin(k0x)], (2)

where η0 = ηJ0(f) cos(ϕ0), ηt = J2(f)
2J0(f) tan(ϕ0) (tun-

able by f and ϕ0) is the ratio between inter- and intra-
sideband coupling strengths. Note that the spatial period
of V̂c(x, t) is twice of Vext(x), therefore the Brillouin zone
(BZ) reduces by half to qx ∈ [−k0/2, k0/2] through the
band folding. Each band λ is split into two bands λ0, λπ
[λ = s, p as shown in Fig. 2(b)] and the lattice poten-
tial V̂c can only couple 0 and π bands due to the mo-
mentum transfer. ϕ0 characterizes the relative phase be-
tween background lattice and the shaking center of cavity
field: for ϕ0 = 0 (π2 ), the shaking potential is symmet-
ric (asymmetric) at each site of the background lattice,
therefore can only induce intra-sideband (inter-sideband)
couplings. Both couplings coexist for ϕ0 6= jπ/2 (j is an
integer) [65].
Method.—Under mean-field approximation, the cavity

field satisfies the Langevin equation i〈ċ(t)〉 = 〈[c,H]〉 −
iγ/2〈c(t)〉 due to the weak leakage of the high-Q cavity,
yielding

iα̇ = (∆c − u− iγ/2)α− η0Θ(t), (3)

with α(t) = 〈c(t)〉/
√
Na and γ the cavity loss rate. Here

Θ(t) = N−1
a

∫
dx〈Ψ†Ψ〉 [cos(k0x) + 4ηt sin(k0x) cos(ωt)]

is the atomic density order. The frequency ω is chosen
to be much larger than η0Θ, ∆c− u, γ/2 (see section ex-
perimental consideration), so that high-order oscillation
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FIG. 3: (a) and (b) Phase diagrams for dominant intra-

sideband coupling, with ∆̃c = 1 in (a) and ηt = 0.5 in (b). I
(II) represents the normal (superradiant) phase. (c) and (d)
Phase diagrams for dominant inter-sideband coupling, with
∆̃c = −1 in (c) and η−1

t = 0.1 in (d), η0t = η0ηt. III repre-
sents the hysteresis region. The insets in (a) and (c) show the
s0-band dispersion in the normal (red dashed line) and super-
radiant phase (blue solid line). The three blue (red) dots in
(b) [(d)] belong to different phases and they mark the points
where the free energy curves are plotted in the inset. The
parameters are ve = −6, ω = 4.8 and γ = 2 (with energy unit
ER = ~2k20/2m), and atom-atom interaction is neglected.

terms ∝ e±iωt can be dropped in Eq. (3). The steady
state solution in the presence of cavity loss is determined
by α̇ = 0, yielding

φ = 2∆̃cη0Θ0/(∆̃
2
c + γ2/4), (4)

where φ ≡ α + α∗, ∆̃c = ∆c − u0 is the effective de-

tuning with u0 = 1
T

∫ T
0
dtu(t) a small constant, and

Θ0 = 1
T

∫ T
0
dtΘ(t) with T = 2π/ω the period. The shak-

ing cavity field φ and atom density order Θ0 are deter-
mined self-consistently through Eq. (4).

In the self-consistent determination, we replace c†+c√
Na

in V̂c(x, t) [Eq. (2)] by φ for the Floquet Hamiltonian
Ha(t) [Eq. (1)] and find Floquet quasi-energy bands and
Floquet states for the BEC, from which the atom den-
sity order Θ can be calculated [65]. Θ in turn drives
the cavity field φ through Eq. (3) as the atom feedback,
yielding the self-adapted steady solution in Eq. (4). We
find that solving the self-consistent equation Eq. (4) is
equivalent to finding the extremum of the free energy
density F (φ) = 〈H〉/Na (i.e., ∂F

∂φ = 0) [65]. Notice that
φ = Θ0 = 0 is always a trivial solution. Across the
transition from normal to superradiant phases, the zero
solution becomes unstable and φ, Θ0 evolve from zero to
finite values.

Results.—We focus on non-interacting BECs and dis-
cuss the interaction effects later. The numerically cal-
culated phase diagrams and corresponding self-adapted
Floquet bands with ω & Esp + |ts| + |tp| are shown in

Fig. 3. For a small ηt (. 1), V̂c is dominated by the
time-independent term that couples s0 and sπ bands,
which would lower the energy of s0 band [see the inset
in Fig. 3(a)], indicating 〈V̂c〉 = −η0φΘ0 < 0. According
to Eq. (4), a non-trivial steady state solution exists only
for blue effective detuning ∆̃c > 0 [Figs. 3(a) (b)]. The
phase transition requires a stronger η0 as ηt increases,
indicating that the transition becomes harder due to the
competition between inter- and intra-sideband couplings.
As ∆̃c decreases, the critical value of η0 required for su-
perradiance first decreases then increases and tends to
infinity at |∆̃c| = 0. This is because V̂c, which drives
the atomic density order Θ0, is proportional to φ and
approaches zero as |∆̃c| → 0 [see Eq. (4)]. We find that
the solution is located at the minima of F (φ), which can
be expanded as F (φ) = a2φ

2 + a4φ
4 + · · ·. F (φ) exhibits

a continuous transition from a single minimum at φ = 0
to double minima at φ 6= 0 [see the inset in Fig. 3(b)],
where a2 and a4 are both positive before the transition,
and a2 changes sign when the phase transition (second
order) occurs.

For a large ηt (� 1), V̂c is dominated by the inter-
band coupling between s0 band and pπ band that has
a lower energy than s0 band, therefore atoms stays at
the high-energy excited band and increasing the cavity
field would rise the band energy [the inset in Fig. 3(c)]
of the BEC, leading to 〈V̂c〉 = −η0φΘ0 > 0. As a result,
the non-trivial steady state solution exists only for red
effective detuning ∆̃c < 0 [Figs. 3(c) (d)]. Surprisingly,
the steady state solution is found at the maxima of F (φ)
which exhibits a transition from a single maximum at
φ = 0 to double maxima at φ 6= 0 [the inset in Fig. 3(d)]
because of the non-equilibrium phase transition of the
dynamical steady states which may not minimize the en-
ergy. Without Floquet sidebands, such superradiance at
energy maximum for ∆̃c < 0 would not exist because
atoms generally prefer staying in the lowest static band
which can only couple with higher static bands.

Moreover, depending on the value of ηt, the transition
can be either continuous (second order) or discontinu-
ous with a hysteresis loop (first order) [Fig. 4(b)]. Such
hysteresis originates from the interplay between intra-
sideband and inter-sideband couplings, which induces a
second-order coupling (similar to a two-photon Raman
process) between s0 and p0 bands mediated by sπ and pπ
bands (see Fig. 2(b)). Notice that the p0 band is just be-
low the s0 band, therefore this second-order coupling rises
the s0 band by increasing a4. As a result, a4 may change
sign (from negative to positive) prior to a2 changes sign
(from negative to positive) when the second-order cou-
pling is strong enough, leading to a multi-stability behav-
ior where F (φ) exhibits three maxima simultaneously.

Hysteresis phenomena are related to strong nonlineari-
ties [78], which are usually induced by strong atom-atom
interactions [57, 60]. For example, the strong Ising inter-
action in the Dicke model can lead to a hysteresis loop
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FIG. 4: (a) and (c) Superradiant order parameters and con-
densate momenta versus η0 and η0t. Stars and circles mark
the transition points between zero and finite condensate mo-
menta for g = 0 and g > 0, respectively. The inset of (a)
shows the band structure for |qmx | > 0. A clear hysteresis
loop appears in (c) with solid lines (dashed lines) correspond-
ing to stable (unstable) steady-state solutions. (b) and (d)
Difference between qcx (red dotted line) and qmx (blue dashed
line) for g > 0. In the gray region, bosons are condensed
into the local band maximum at qx = 0. The black solid line
shows qmx = qcx for g = 0. (a) and (b) [(c) and (d)] corre-
spond to dominant intra-sideband (inter-sideband) coupling
with ∆c = 1, ηt = 0.5 and gn̄ = 0.02 (∆c = −1, η−1

t = 0.15
and gn̄ = 0.1). n̄ = Na/L is the average density with L the
system size. Other parameters are the same as in Fig. 3.

of the superradiant phase transition [57–59]. However,
the hysteresis effect in our system does not need atom-
atom interaction at all, and has a completely different
mechanism originating from the coupling between Flo-
quet sidebands induced by the shaken cavity mode. Our
study offers an excellent example and a realistic system
for observing hysteresis effects without atom interactions.

As the superradiant field increases, the s0-p0 band
coupling would induce a transition of the Floquet band
ε̃s0(qx) from a single minimum at qx = 0 to doubly de-
generate minima at qx 6= 0 [see inset in Fig. 4(a)]. In our
system, the s0-p0 band coupling is a Raman-like cou-
pling mediated by sπ and pπ, therefore such transition
should be observed when the inter- and intra-sideband
couplings coexist. We consider atom-atom interaction
(tunable through Feshbach resonance [79]) that is weak
and repulsive, therefore the interaction energy is always
minimized when the system stays in a single momentum
state. We assume that ε̃s0(qx) is minimized at ±qmx . For
negligibly weak interaction, the condensate momentum
qcx would locate at one of the band minima (either +qmx or
−qmx ) due to spontaneous symmetry breaking [80]. Such
a transition in the BEC would also lead to a second order
transition [stars in Figs. 4(a) (c)] of the shaking cavity
field φs due to the back action.

As the atom-atom interaction increases (still weak
enough such that the superradiant phase transition is not
affected and the long-time behaviors (heating, atom loss,
etc.) are not significant [22, 25, 81]), the phase transition
of the BECs from qcx = 0 to qcx 6= 0 may be shifted be-

cause qcx 6= ±qmx . qcx should be determined by minimizing
ε̃s0(qx)+ε̃int(qx), with ε̃int(qx) the momentum-dependent
interaction energy,

ε̃int(qx) =
1

T

∫
dt

∫
dx
g

2
|ns0,qx(x, t)|2. (5)

Here g is the interaction constant and ns0,qx(x, t) =
〈Ψ†Ψ〉 is the atom density. In our system, band mix-
ing enhances spatial modulation of the density, and the
interaction energy ε̃int(qx) is minimized at qx = 0 where
the mixing is the smallest. As a result, qcx is smaller than
qmx , and bosons may be condensed into the local maxi-
mum of the single-particle band at qx = 0 [see Figs. 4(b)
(d)]. The transition from qcx = 0 to qcx 6= 0 for g > 0 re-
quires a stronger super-radiant field than the transition
for g = 0 [see Figs. 4(a) (c)], and it also leads to a second
order transition of φs which in turn leads to a transition
in qmx .

Experimental consideration.—We consider a high-
finesse (low-loss) cavity with γ = 2ER (with ER =
~2k2

0/2m the recoil energy). Generally, atoms with a
small mass are preferred to obtain a large ER, thus a
large γ, which makes the cavity easy to realize. For ex-
ample, 7Li (23Na) atoms has a recoil energy ER ∼ 40kHz
(10kHz), corresponding to γ = 80kHz (20kHz), which can
be realized with current technique [65, 82]. The shaking
frequency ω0 is about several ten kHz for 23Na and sev-
eral hundred kHz for 7Li (both are much smaller than
the free spectral range ∼GHz), and such phase modula-
tion can be implemented by PZT-driving mirrors or low-
loss EOMs [65]. The system studied here only involves
a change of introducing PZT-driving mirrors or inserting
two EOMs into the setups used in the ETH and Hamburg
laboratories [45, 49, 52, 53, 82], and thus should be fea-
sible with current technology. Moreover, our model can
also be implemented by combining a shaking external lat-
tice and a periodic driving force (e.g., using a periodically
modulated magnetic field gradient) [65].

Discussion.—We proposed a new type of Floquet
physics where the parameter modulations are not only
related to external driving, but also mutually coupled
with system dynamics. As an example, we studied such
Floquet dynamics of BECs in shaking optical lattices,
which lead to interesting new phenomena including self-
adapted shaking fields, Floquet bands and hysteresis ef-
fects. Such self-adapted Floquet physics may also arise in
various other systems such as Rydberg-atom or molecule
micromaser [83], ion-trap cavity [84] and circuit quan-
tum electrodynamics (circuit QED) [85], etc. For exam-
ple, in a circuit QED system, the electromagnetic field on
the waveguide resonator can be periodically modulated
by attaching superconducting quantum interference de-
vices (SQUIDs) to the ends of the resonator, with the
SQUIDs driving by external magnetic fluxes [86]. Such
a modulated waveguide resonator can couple with su-



5

perconducting qubits (artificial atoms) and these qubits
may also strongly couple with each other, where in-
teresting self-adapted Floquet dynamics may emerge.
Such self-adapted Floquet circuit QED may find impor-
tant applications in quantum information processing and
will be addressed in future works. Within the shak-
ing lattice cavity system, interesting physics may also
arise by considering strong atom-atom interaction (Bose-
Hubbard model [52, 53]) or strong atom-single-photon
coupling (limit cycles and chaos [87]), and superradi-
ance of fermion gases (topological bands [88, 89]). In
this spirit, our proposal opens up new possibilities for
studying self-adapted Floquet physics in various systems,
which may pave a way for engineering new exotic quan-
tum matter.
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