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We propose quantum engines powered entirely by a position-resolving measurement performed on
a quantum particle. These engines produce work by moving the quantum particle against a force.
Unlike classical information-driven engines (e.g. Maxwell’s demon), the energy is not extracted from
a thermal hot source but directly from the observation process via partial wave-function collapse
of the particle. We present results for the work done and the efficiency for different values of the
engine parameters. Feedback is required for optimal performance. We find that unit efficiency can
be approached when one measurement outcome prepares the initial state of the next engine cycle,
while the other outcomes leave the original state nearly unchanged.

Traditional discussions on quantum measure-
ments focus on the probability to find different possi-
ble results, and how a given result changes the quan-
tum state of the system being interrogated. How-
ever, researchers have begun to study the measure-
ment process with point of view of thermodynam-
ics, bringing surprising new insights. On the one
hand, it was shown that resources may be required to
make measurements [1], and certain measurements
are even forbiden from taking place as they vio-
late conserved quantities, such as energy [2]. The
Wigner, Araki, Yanase (WAY) theorem [3–5] and
its generalizations [6, 7], implies that a source of en-
ergy is needed if one wants to measure repeatedly
and accurately observables which does not commute
with the system’s Hamiltonian.

On the other hand, when a measurement is al-
lowed, it can be seen as a thermodynamic resource,
analogous to heat or work reservoirs, such as a bat-
tery, in classical thermodynamics. This resource is
two-fold: First, just as for measurements on classi-
cal systems, the information gained during a quan-
tum measurement can be used to design work ex-
traction via an appropriate feedback. This is the
principle of Maxwell’s demon already implemented
in various quantum and classical systems [8–13]. In
these setups, energy is extracted from a hot thermal
reservoir just as in a regular heat engine. Second,
in contrast with the classical world where observa-
tion does not impact the measured system, quantum
measurement induces a non-unitary evolution that
may change (and in certain cases increase) the en-
ergy of the system [14]. Combining these two prop-
erties allows quantum engines to be designed that
extract energy from the observation process, in the
absence of any hot thermal reservoir. A recent work
[15] proposed a quantum Maxwell demon being able

to extract energy from measurement-induced coher-
ences in a qubit, using Rabi oscillations to transfer
work into a coherent optical tone. However, as the
dispersive measurement of the qubit also involved an
optical field, the net result is simply using the qubit
as an energy transducer from one optical mode to
another. Ref. [16] exploits measurement to let the
system do work on a classical magnetic field or a
time-varying external potential. Ref. [17] also pro-
poses a measurement-induced work extraction rely-
ing on non-Markovian effects in a zero temperature
thermal reservoir.

In the current paper, we propose quantum
measurement-fueled engines able to drive a single-
particle current against a potential barrier. These
engines thus do useful work such as raising an eleva-
tor, or charging a battery. We stress that this form of
work extraction does not involve a time-dependent
Hamiltonian of the system: the work output is di-
rectly stored in the potential energy of the particle,
described in a fully quantum-mechanical way. In
addition, the energy comes entirely from the pro-
cess of observation: Measuring the system in a basis
that does not commute with its Hamiltonian allows
energy to be taken away from the measurement ap-
paratus and given to the system in such a way as
to be turned into useful work. This energy transfer
is stochastic in nature, so has some similarities to
heat in a stochastic thermodynamics context [14].
However, this similarity is only superficial, in that
we show the existing thermodynamic bounds do not
apply, and we are able to design engines with this
“quantum heat” that can approach unit efficiency
[15]. As recently stated, such an engine would not
operate if the measuring apparatus was isolated [18]:
input power must be provided to the apparatus to
perform such measurements, which is taken into ac-
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count for the engine’s efficiency.
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FIG. 1. a: Situation under investigation. The parti-
cle’s initial wave function φ1(x) (blue solid) is the ground
state which is confined between the tilted scaled poten-
tial Ṽ (x) = V (x)/(~/(2mx20) = x/x0 (depicted in solid
red) and the wall (in gray), initially located at position
xwall = 0 for the drawing. The generalized measurement
is characterized by the function Mo(x) (dotted line) able
to tell that, for sure, the particle is outside the region
[xwall, xwall + εx0] when outcome o is found. b: Energy
exchanges occurring during the engine cycle: the mea-
surement provides the quantum heat Qq, which is split
between useful work W and the heat QC dissipated in
the cold bath. The dotted arrows stand for the details of
the energy exchanges during the measurement according
to our measurement model (see SI [19]): the work WM

is needed to entangle S and the meter, and EM is the
average energy provided to the meter to reset it before
the next cycle. c,d: Two possible implementations. c:
The elevator. An atom S is on a platform and experi-
ences gravitational acceleration g. The detector D checks
every cycle if the atom is within a distance ε from the
platform and sends the outcome to the elevator operator
O (lift attendant) who shifts the elevator to the “next
floor” of height εx0 for free if the outcome is o. d: The
single electron battery. The negatively charged particle
experiences an electric field of intensity E between two
electrodes. The wall is a piece of neutral insulator that
can be moved depending on the outcomes of D. The
electron successfully moved distance L between the elec-
trodes charges the battery with energy eEL.

Setup.— We will now make a quantum measure-
ment do useful work by having a particle climb a
tilted linear potential. The setup is the following
(see Fig. 1): a particle is described by a pure state
|ψ〉 in a potential V̂ = V (x̂) = V0x̂/ξ + Vwall(x̂).
The term Vwall(x) corresponds to a barrier of in-
finite height preventing the particle from reaching
the positions x < xwall. The time-independent
Schrödinger equation for a particle with mass m and
energy E, −(~2/2m)∂2xφ(x) + V (x)φ(x) = Eφ(x),

can be rewritten for x > xwall as an Airy differential
equation φ′′(z) − zφ(z) = 0 in term of the variable
z ≡ (x− ξE/V0)/x0). We have introduced the char-
acteristic length x0 = (~2ξ/2mV0)1/3.

Taking into account the boundary condition
φ(xwall) = 0, we can express the eigenstates of the
Hamiltonian in terms of the Airy function Ai(x) [20]
and its zeros {al}l≥1 with al < 0 and al+1 < al:

φn(x) =
1
√
x0

Ai[(x− xwall)/x0 + an]

Ai′(an)
, (1)

for x ≥ xwall, and 0 otherwise. The energy eigenval-
ues are

En =
~2

2mx20
|an|+

~2

2mx20
(xwall/x0). (2)

Let us start the system so the particle is in the
ground state φ1(x) and the wall is at position x = 0.
An ideal position measurement of the particle is in
fact impossible, because it would require an infinite
amount of energy. Let us therefore consider another
kind of position measurement, and simply determine
whether the particle is within some distance εx0
of the wall, or not. As shown in the analysis be-
low, even this “yes-no” question introduces discon-
tinuities in the wavefunction and is also too costly.
We therefore adopt a minimal model, and consider
two possible outcomes of a generalized measurement,
each associated with Kraus operators Mo and Mi,
where the labels i, o denote that particle is found in-
side or outside the region [0, εx0] from the wall. We
smooth the abrupt transition with an interpolating
region from εx0 to (ε + w)x0. Let us choose Mo to
be

Mo =


0, x/x0 < ε,

sin[π(x/x0 − ε)/2w], ε < x/x0 < ε+ w,

1, x/x0 > ε+ w.

(3)
M2
i + M2

o = 1 for all space (let us choose Mi also
real) because Mo,Mi are Kraus operators [21, 22],
so we must then have Mi decreasing from 1 at the
wall as a cosine function down to 0. Regardless
of the specific form for Mo,i, quantum mechanics
dictates that the probability of finding result i, o is
given by Pi,o = 〈φ1|M2

i,o|φ1〉 =
∫
dxM2

i,o(x)φ21(x),
with a conditional post-measurement state given by
|φα〉 = Mα|φ1〉/

√
Pα, α = i, o.

Engine cycle.— The three strokes of the engine
cycle can now be described. The engine consists of
the system (a single particle), a detector, and a con-
troller to either move the wall’s position or keep it in
place. The object of the engine is to convert energy
given by the measurement process into useful work.
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1. Measurement: A measurement of the particle’s
position occurs, resulting in the stochastic re-
sult i or o with probabilities Pi, Po. Generally,
the new (disturbed) state of the particle is no
longer in its ground state and therefore has
a greater internal energy, regardless of which
outcome occurs. The energy gained by the
particle during this step must be provided by
the measurement because total energy is con-
served. We refer to the average energy gain
over both outcomes, Qq ≥ 0, as “quantum
heat” because of its stochastic nature.

2. Feedback: If outcome i was found (particle is
close to the wall), then the engine controller
does nothing. If outcome o is found (the par-
ticle must be a distance larger than ε from the
wall), then the controller suddenly moves [23]
the wall to the right of a distance xM = εx0.
This costs no work in principle because the
wavefunction’s value is 0. Further, it has been
shown that motion of the wall through a re-
gion of zero wavefunction makes no change to
the rest [24].

3. Reset: Whatever the outcome, we let the par-
ticle relax in contact with a bath of tem-
perature TR very low with respect to T ∗ =
(E2 − E1)/kB ' 1.75~2/2mx20kB , where En
is defined in Eq. (2). For a relaxation time
long enough, the particle is in its ground state,
possibly with an advanced wall. As the par-
ticle is in a known pure state after the mea-
surement, this step can in principle be re-
placed with a coherent energy extraction step
mapping the post-measurement states to the
ground state(s), such that no thermal bath is
required. The corresponding system unitaries
may be included as part of the measurement
operator, so that no energy is wasted on the
cold bath. This unitary version of the reset op-
eration has the great advantage to be achiev-
able in a finite time, while a perfect thermal-
ization is constrained by the third law of ther-
modynamics. However, this replacement may
be impractical in certain cases. Note that if
the wall has been advanced (outcome o) the
new ground state has an energy increased by
an amount W = (~2/2mx20)ε: this corresponds
to work extracted during the cycle used to in-
crease the particle’s potential energy.

We note that there is a conditional step in the above
cycle, and the engine is instructed to do different
things depending whether outcome i or o is found.

If we consider this system to be an isolated thermo-
dynamic system of the same type of Szilard, see e.g.
[25] with the observer acting as a quantum Maxwell
demon, the demon resets its memory in a bath of
temperature TD. Although we are not extracting
work from a thermal bath, but rather from the quan-
tum measurement process, the use of finite resources
used cyclically still requires erasure of memory. The
erasure cost is Wer = −kBTD

∑
α=i,o Pα logPα ≤

kBTD log 2. It can be set much smaller than W either
by considering a sufficiently low TD (in particular for
TD = TR) or choosing Po � Pi or Pi � Po. These
latter two situations are reached in the Zeno regime
and the gradual measurement limit, respectively, as
detailed below.

Results.— We now analyze the engine’s perfor-
mance. The engine cycle is stochastic, so it is pos-
sible that from run to run, a large amount of work
may be done (i.e. a long sequence of o results). How-
ever, we will consider the average performance of the
engine. The engine cycle is constructed so that the
system always begins in the ground state, and there-
fore the average work per cycle is given by the work
in steps 2 and 3, times the probability of o,

W = ε
~2

2mx20

∫
dxM2

o (x)φ21(x). (4)

The average amount of energy given by the measure-
ment apparatus to the system (per cycle) is given by
Qq =

∑
α Pα〈φα|H|φα〉 − 〈φ1|H|φ1〉, or

Qq = − ~2

2m

∫
dx

(∑
α

Mα(x)M ′′α(x)

)
φ21(x), (5)

where we have assumed Mo,i are diagonal in the po-
sition basis, causing the potential energy term to
drop out. The conversion efficiency is defined as

η =
W −Wer

Qq
. (6)

For the specific choice of the Kraus operators in
Eq. (3), the quantum heat takes on the simple form,

Q̃q =
(
π
2w

)2 ∫ (ε+w)x0

εx0
dxφ21(x), where the tilde sym-

bol denotes the work or heat divided by ~2/(2mx20).
It may naively be thought that this engine is most

efficient when the variables ε, w are very small, such
that the outcome o becomes much more frequent
than the outcome i, a kind of “Zeno limit engine”
as in [15]. In fact, this is false because the quan-
tum heat diverges when w → 0, reflecting the prob-
lematic nature of the strict “yes-no” question men-
tioned in the setup (See SI [19]). As shown in Fig. 2,
the best work performance (W̃ = 0.80) is given for
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FIG. 2. a,b: Efficiency η (a) and average work extracted

per cycle W̃ (b) as a function of ε and w. Insets: Section
of the efficiency (a) and the work (b) along the dashed
white line corresponding to ε = ε∗. c: Comparison of the
post-measurement state corresponding to result o (blue
dashed-dotted) [resp. i (green dashed)], with ε = ε∗

and w = 10 with the new ground state wavefunctions
of the linear trap potential displaced by an amount ε∗x0
(pink “x”) [resp. original ground state wavefunction (red

solid)]. d: Efficiency η as a function of the work W̃ when
w is varied while ε is kept constant equal to ε∗. For plots
a,d, TR = 10−2T ∗.

ε ≈ 1.18, and for w = 0, which corresponds to van-
ishing efficiency. Conversely, the efficiency nearly
reaches unity for large w, i.e. in the case of “grad-
ual” measurements that have a very slow turn-on
outside the region [0, x0ε]. Define the asymptotic
efficiency, ηasyp = limw→∞ η to find [26]

ηasyp = ε

∫∞
εx0

dx (x/x0 − ε)2φ21(x)∫∞
εx0

dxφ21(x)
. (7)

Incredibly, the efficiency of the measurement ap-
proaches 1 at ε = ε∗ ≈ 1.100, corresponding to
a maximal efficiency of ηmax ≈ 0.998. We can
understand more deeply why this optimal value of
ε∗ corresponds to maximal efficiency by plotting
the (normalized) post-measurement state φo(x) ∝
(x − ε∗) Ai(x + a1), and comparing it to the new
ground state of the (displaced) trap potential (∝
Ai(x + a1 − εx0)), shown in Fig. 2c; they are
nearly identical. Similarly, the comparison between
Miφ1(x)/

√
Pi with the original ground state look

nearly the same. Consequently, either moving the
wall by εx0 or leaving it in place almost perfectly re-
alizes the next phase of the engine cycle [27]. Even-
tually, a trade-off between efficiency and work can

be found for intermediate values of w (see Fig.2d),
setting ε = ε∗ [28].

Implementations.— We implement two different
variations of the engine shown in Fig. 1. The first is
a single atom elevator: a gravitational potential of
V (x) = mgx acts on the atom, resulting in the char-
acteristic length of x0 = (~2/2m2g)1/3 ≈ 6µm/m̃2/3

[29] for an atom near the surface of the earth of rel-
ative atomic mass m̃. The temperature needed to
cool to the ground state is T ∗ = m̃1/312nK, so for
e.g. a Rb atom, we have x0,Rb ≈ 300nm and require
T ∗Rb ≈ 50nK, which is quite possible to realize in
cold atom experiments. Alternatively, we can con-
sider one ultra-cold neutron above a neutron mir-
ror, which is the setup of recent gravity-resonance
spectroscopy experiments [30, 31]. In the sketch
of Fig. 1a, the elevator has a platform that has a
counter balanced weight over the pulley. Since the
net force is zero, the elevator can be raised to the
“next floor” by the elevator operator with no work
done, so long as the movement only occurs when the
atom has no amplitude to be near the platform.

In our second example shown in Fig. 1b, we
consider a parallel plate capacitor that is being
charged, one electron at a time (a battery). We
consider a potential difference of 1V across a 1cm
gap. This gives a characteristic length scale of
x0 = (~2/(2me2E))1/3 ≈ 72nm, where E is the elec-
tric field between the plates. The required reset tem-
perature is only T ∗ ≈ 0.15K because the electron is
so light. An insulating, uncharged plate with negli-
gible susceptibility can be moved through the elec-
tric field without any work done. The plate stops
the electron from accelerating back to the positively
charged electrode. A measurement of the electron’s
position away from the plate allows the controller to
advance the position of the plate to bring the elec-
tron to the other side of the capacitor, charging the
battery.

In the SI [19], we present a model of the mea-
surement, implemented by a spin-1/2 meter im-
pulsively interacting with the particle, in order to
track the energy exchange. Letting the spin be-
gin with energy Eo − Ei the difference of the en-
ergies of the states corresponding to outcomes o
and i, during the interaction, an amount of work
WM = Ei − E1 ≈ 0 is performed on the joint spin-
particle system. The average energy given away by
the spin is EM = Po(Eo − Ei). These energies pro-
vide the “fuel” for the quantum measurement en-
gine, Qq = EM + WM, and must be replenished for
the engine to continue working, see Fig. 1b: as dic-
tated by the WAY theorem, the measurement is not
repeatable if the meter is not externally powered.
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Conclusions.— We have constructed an explicit
quantum engine that converts energy from quantum
measurement to do useful work on the system. This
process requires feedback in general. We stress that
a simple transfer of energy is not sufficient to make
a working engine. The energy must be transferred
in such a way that it can be efficiently extracted.
To this end, our three stroke engine is near optimal
because one outcome produces nearly the correct
ground state of the system in the next cycle, while
the other outcomes leaves the state nearly the same
as before. The ability to advance our wall with no
work expended allows efficient conversion of kinetic
to potential energy to make the particle do work
against an opposing force, provided by the measure-
ment process. In spite of the stochastic nature of the
measurement process, we are able to attain efficien-
cies approaching unity. This result clearly illustrates
the differences with quantum thermal engines.
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