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Neural network based machine learning is emerging as a powerful tool for obtaining phase diagrams
when traditional regression schemes using local equilibrium order parameters are not available, as
in many-body localized or topological phases. Nevertheless, instances of machine learning offering
new insights have been rare up to now. Here we show that a single feed-forward neural network
can decode the defining structures of two distinct MBL phases and a thermalizing phase, using
entanglement spectra obtained from individual eigenstates. For this, we introduce a simplicial
geometry based method for extracting multi-partite phase boundaries. We find that this method
outperforms conventional metrics for identifying MBL phase transitions, revealing a sharper phase
boundary and shedding new insight into the topology of the phase diagram. Furthermore, the phase
diagram we acquire from a single disorder configuration confirms that the machine-learning based
approach we establish here can enable speedy exploration of large phase spaces that can assist with
the discovery of new MBL phases. To our knowledge this work represents the first example of a
standard machine learning approach revealing new information on phase transitions.

The application of machine learning (ML)1 to central
questions in the theory of quantum matter is a rapidly de-
veloping research frontier. So far, efforts have been two-
fold, focusing on: (1) representing states compactly2–5

and (2) identifying and classifying different phases of
matter6–15. The driving insight here is that the problems
of theoretical interest are essentially those of regression
in which an exponentially large amount of data must be
condensed into a more accessible or meaningful form, e.g.
the labeling of wavefunctions with phases. As neural net-
works are universal function approximators and facilitate
nonlinear regression, neural network based ML can ef-
fectively distill relevant information from complex data
while taking it at face value. This is particularly appeal-
ing for phases outside the traditional regression scheme
where a local order parameter may not be readily avail-
able. Such phases include topological phases and out-of-
equilibrium eigenstate phases16,17 in the context of many-
body localization (MBL)18–24. Although there has been
recent progress in using ML for topological phases8,13,15

and MBL phases12,14, extracting phase boundaries in
these settings has been a challenging frontier.12,14 More-
over, the question of whether the same data and archi-
tecture can be used to discern multiple phases, especially
multiple MBL phases has been unclear.

MBL generalizes the phenomenon of Anderson local-
ization to the interacting setting, bringing out the inter-
play of disorder and interactions. Since MBL systems
stay out of thermal equilibrium, they can display a host
of rich dynamical phenomena25–30. Furthermore it is now
known that different varieties of MBL phases (e.g. MBL
paramagnets, symmetry breaking MBL phases, topo-
logically ordered MBL phases etc.) — each showing
different patterns of order in individual highly-excited
many-body eigenstates — can be realized in a given
system16,17,31–33. With experimental realizations of novel
out-of-equilibrium states in MBL settings such as time
crystals34–38, it is all the more important to understand
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FIG. 1. (a) A depiction of our neural network. (b) The 2-
simplex codomain of our neural network outputs. Colored
circles represent regions with maximal confidence; the white
circles represent regions of maximal confusion. The green
point represents an example output with its associated dmin

marked with a green line.

these out-of-equilibrium phases and the associated tran-
sitions. Moreover, we need efficient ways to study and
discover new MBL phases without an a priori knowledge
of the defining order-parameters.

Despite extensive research20,39–46, a complete theoreti-
cal understanding of the MBL transitions is lacking, par-
tially due to the absence of a comprehensive scheme for
regression. Although entanglement entropy serves as a
useful diagnostic of thermalization (excited eigenstates in
the thermal phase are volume-law entangled, while they
are only area-law entangled in the MBL phase20,31), it
appears to be too aggressive a regression since it traces
out important entanglement correlations. The structure
of these entanglement correlations is expected to be rel-
evant for understanding the nature of the many-body
“resonances” that drive the transition out of the MBL
phase40,41,46. Moreover the entanglement spectra of indi-
vidual many-body eigenstates must encode the structure
of different MBL phases, even when the defining corre-
lation functions are not known a priori. While there
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have been efforts to utilize the full entanglement spectra
(ES)47,48, a complete understanding for how to interpret
the ES has not yet been established. Alternatively there
have been efforts to employ neural networks to extract
relevant information from entanglement spectra12,14, but
it has been unclear whether ML has been able to offer
any new insights thus far.

In this work, we take a first step towards a ML as-
sisted study of MBL phase transitions. Our model is a
disordered and interacting transverse-field Ising model
(TFIM) which has two distinct many-body localized
phases: (1) many-body localized spin-glass (MBL-SG)
and (2) many-body localized paramagnetic (MBL-PM),
in addition to a thermal phase. Using the entanglement
spectra of individual eigenstates as our only input to
a standard neural network, we are able to locate these
phase boundaries with greater precision than standard
methods for studying MBL transitions. To do this, we
introduce a new geometric approach for interpreting neu-
ral network outputs for multipartite classification.

Model – The TFIM in the presence of disorder and
interactions is a “canonical model” for studying novel
eigenstate phases16,17,49. It has a well-studied non-
interacting limit50, and well-understood descriptions for
the paramagnetic and spin-glass phases in the different
limits. An Ising self-dual variant for an L site chain is51:

H = −
L∑
i=1

[
Jiσ

z
i σ

z
i+1 + hiσ

x
i + λ

(
h̄σxi σ
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i+1 + J̄σzi σ

z
i+2

)]
,

(1)
where σzi are Pauli spin 1/2 matrices on site i. The cou-
plings, {Ji}, and onsite fields, {hi}, are drawn from log-
normal distributions such that the standard deviation of
their logarithms is δ(log J) = δ(log h) = 1. Note that this
model is equivalent to a disordered interacting fermion
model upon a Jordan Wigner transformation, where the
interaction strengths are proportional to λ. Finally, h̄
and J̄ denote the means of {Ji} and {hi}52. The means
log J , log h, and λ serve as tuning parameters that can
be used to drive different phase transitions.

Let us first consider the axis λ = 0, which is equivalent
to a disordered free-fermion model subject to Anderson
localization. From the eigenstate order perspective, there
are two distinct phases with respect to the global Z2 Ising
symmetry of the model under spin flips P =

∏
i σ

x
i : the

symmetry-broken spin-glass (SG) phase for J̄ > h̄ and
the paramagnetic (PM) phase for J̄ < h̄. Deep in the SG
phase, individual many-body eigenstates are macroscopic
superpositions (i.e. Schrodinger “cat” states) in the σz

basis with localized domain walls: |α〉 ∼ | ↑↓↓↑↓ ...〉 ±
| ↓↑↑↓↑ ...〉, and the connected correlation function of σz

shows long-range order with

〈α|σzi σzj |α〉c ≡ 〈α|σzi σzj |α〉 − 〈α|σzi |α〉〈α|σzj |α〉 = ±|cα|,
(2)

|cα| > 0 even as |i − j| → ∞. By contrast, for the
equilibrium problem in the absence of disorder, a finite
density of delocalized domain walls destroys long-range

order at any finite temperature in 1D in accordance with
Peierls-Mermin-Wagner theorems. Thus, the SG phase
in 1D furnishes an example of a model where localiza-
tion enables a new form of dynamical order that is disal-
lowed in equilibrium16,17. On the other hand, the eigen-
states deep in the PM phase resemble product states in
the σx basis, |α〉 ∼ | →←←→← ...〉 without LRO, i.e.,
〈α|σzi σzj |α〉c = 0. The critical point between these two

phases is at the Ising self-dual point, log J = log h, and
the critical properties for λ = 0 are described by an infi-
nite randomness fixed point50.

Once λ 6= 0, a numerical study over a large number
of disorder realizations looking at all the eigenstates is
necessary to obtain the phase diagram that now includes
the thermal phase. With finite λ, the nature and mech-
anism of various phase transitions largely remain open
questions since the existing theoretical understanding is
limited to three extreme regimes in the phase space: (1)
J � h, λ, (2) h � J, λ, (3)λ � J = h. In the limits (1)
and (2), the Anderson localized SG and PM phases of
the non-interacting system generalize to MBL versions of
themselves16,17,49. On the other hand, in the strongly in-
teracting limit, the system will be in a thermal phase with
its excited states exhibiting volume law entanglement53.
Finally, since our interactions were chosen to respect the
Ising duality, we expect the phase diagram with non-
zero λ to still be symmetric about log J = log h (with
small corrections for open boundary conditions). Nev-
ertheless, the precise topology of the tri-partite phase
boundary and the existence or absence of a direct MBL-
MBL phase transition51,54 are hotly debated questions.
On the other hand, most existing approaches for detect-
ing phase boundaries rely on the standard deviation of
the entanglement entropy (see Fig 3) with low resolution
leaving the physics of the critical regime largely inacces-
sible.

Neural Network based Approach – In order to access
the information in the entanglement spectra in a holis-
tic manner, we build and employ a feed-forward neural
network with a single hidden layer. Our hidden layer
contains 200 neurons with sigmoid activation functions.
We utilize a cross-entropy cost function with L2 regular-
ization and use a softmax output layer with three neu-
rons, each of which corresponds to one of three possi-
ble phases, namely the SG-MBL, the PM-MBL, and the
thermal phase (see Fig. 1(a)).

We then generate the training and testing data for
different disorder configurations of the model (1) on an
open chain with 12-sites. Specifically, we use exact di-
agonalization to obtain all the eigenstates and take the
middle-quarter of the eigenstates in each Ising symme-
try sector to calculate the bipartite entanglement spec-
tra for each eigenstate. The training set consists of three
points in the phase space where the phase is known:
log J − log h = ±0.8 with λ = 0.2 and log J − log h = 0.0
with λ = 1.0. We use 1000 disorder configurations la-
beled with each of the three points to train our network
using a standard error function to an accuracy of over
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90%. The fact that successful training could be reached
already points to the fact that our network could ex-
tract qualitatively distinct information in the entangle-
ment spectra of eigenstates in the three phases of interest.
Additionally, in Appendix A, we look at the ability of a
neural network to “discover” new phases by only training
on the two MBL phases. In this case, although it knows
nothing about the thermal phase, it is nevertheless able
to recognize that it doesn’t fit within its learned phase
paradigm.

Once the training is complete, we feed the entangle-
ment spectra from each point in the phase space of
(log J−log h, λ) to the network. The neural network out-
put is a triplet that may be thought of as the network’s
confidence that the given input is in each phase. Note
that all conventional measures require sampling thou-
sands of disorder configurations. On the other hand, we
find that averaging the neuron output over just 100 dis-
order configurations yields a satisfying phase diagram,
paving the way for fast scans of large areas of phase
space. The purpose of the averaging is to both look into
the statistics, as well as to compare with the conventional
measure on equal footing. In Fig. 2 (a) we plot the av-
erage neural network confidence output in the range of
log J − log h ∈ [−3.0,+3.0] and λ ∈ [0.1, 2.0] by repre-
senting each component of the triplet with three colors.

The phase diagram Fig. 2 (a) obtained by the neural
network displays several satisfying features that are con-
sistent with theoretical insights. First of all, the phase di-
agram is roughly symmetric about the line log J−log h =
0.0 and consistent with the Ising duality of the Hamil-
tonian Eq.(1). Furthermore, the upward curvature of
the phase boundary between the MBL phases and the
thermal phase is consistent with the fact that the non-
interacting model is most delocalized near the SG-PM
transition50 and hence the transition is most suscepti-
ble to thermalization upon adding interactions near the
(log J − log h = 0.0, λ = 0) point. However, it is evident
from the representative line cuts in Figs. 2 (b-d) that the
variation of the confidence outputs is gradual and broad,
masking the precise topology of the phase boundaries.
Finite-size scaling is presented in Appendix B for L=8,
10, 12 showing the sharpening of the transition with in-
creasing system size.

In order to more precisely study the topology of the
phase diagram, we developed a protocol for extracting
phase boundaries from multi-neuron outputs. This ap-
proach will extract the phase boundaries in an unbi-
ased way that allows us to to quantify the smoothness
and width of the transition, and compare our results to
conventional methods. Our approach is geometrically
motivated and uses the fact that the neuron outputs
sum to unity in a soft-max layer. Specifically, with a
soft-max N -neuron output, the codomain of the neural
network confidence output is a (N − 1)-simplex embed-
ded in the N -dimensional space of outputs. The points
of maximal confusion constitute geometrically notable
points on the (N − 1)-simplex; for N = 3 these are

(a)

(b) (c) (d)

FIG. 2. (a) The phase diagram with average neural network
output plotted as an RGB parameter. Cuts marked by white
lines in (a) are shown in (b) λ = 1.0 (c) log J − log h = 0.8
, and (d) log J − log h = −0.8 The sampling width is 0.1 for
each parameter.

the mid-points of the edges and the barycenter. Ex-
plicitly, in our present case the codomain of our neu-
ral network is a 2-simplex and the points of maximum
confusion that should naturally belong to the phase
boundary11 are (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2),
and (1/3, 1/3, 1/3) (see Fig. 1(b)). Now for any confi-
dence triplet, one can measure the minimal distance dmin

to the set of maximal confusion points. Once we normal-
ize this distance by the maximal possible distance of any
point on the simplex to a point of maximal confusion, we
obtain a continuous measure of confusion capable of ex-
tracting boundaries: C ≡ 1−d̄min, where d̄min denotes the
normalized distance. This measure of confusion ranges
between C = 1 when the confidence corresponds to one
of the maximal confusion points, and C = 0 when the net-
work outputs a particular phase with 100% confidence.

Now at each point in the phase space, we take the aver-
age confidence triplet to evaluate the confusion measure
C as shown in Fig. 3(a). It is notable that our confu-
sion measure allows us to establish phase boundaries in
a manner that is native to the neural network approach.
Surprisingly, the phase boundary detected by neural net-
work has the topology of a “wishbone” with a visible
phase boundary between two MBL phases (see Fig. 3(a))
at small λ. This warrants a more exhaustive study of this
transition, including finite-size effects in order to probe
the existence of a direct SG-MBL to PM-MBL transition.

The C-measure based extraction of the phase bound-
ary can be contrasted with a more conventional entangle-
ment entropy based approach49. Since the EE changes
from area law to volume law upon transition from a MBL
phase to a thermal phase, it is expected that the stan-
dard deviation of the EE in eigenstates peaks at the
phase boundary49. Fig. 3(b) shows the standard de-
viation taken over all disorder samples and the middle
quarter of the eigenstates from each sample. As ex-
pected, the standard deviation of the EE is peaked at
the MBL-thermal boundaries and is aligned with our
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machine learning derived measure. However, two ad-
vantages of the neural-network C measure easily stand
out. First, the EE-based approach cannot distinguish
the boundary between the two area-law MBL phases (see
the U -shaped phase boundary in Fig. 3(b)) whereas the
neural network is successfully differentiating these (see
the “wishbone” shaped phase boundary in Fig. 3(a)).
For the MBL-SG problem, one can additionally construct
an Edwards-Anderson spin-glass order parameter to sin-
gle out the MBL-SG phase49. However, the ability of
the neural network to distinguish between different MBL
phases using just the ES and no other “prior knowledge”
about order-parameters can prove useful for future stud-
ies of new MBL phases where order-parameters might
be unknown. Second, the C measure reveals a markedly
sharper phase boundary that enables a better study of its
topology (see the line cut comparisons in Fig. 3(c,d,e)).

(a)

(b)

(c) (d) (e)

FIG. 3. (a) Our C-measure for extracting phase boundaries
(defined in the main text) and (b) the average standard de-
viation of the entanglement entropy. The data in each has
been normalized by the largest value in the parameter space
for meaningful comparison. (c-e) The measures plotted in
(a-b) along the cuts marked in white lines: (c) λ = 1.0, (d)
log J − log h = +0.8, and (e) log J − log h = −0.8.

Finally, we should remark on the neural networks’ abil-
ity to see through the noise that is inevitable in studies
of disorder effects. Although we have averaged over 100
different disorder configurations to gain statistics in the
bulk of this letter, Fig. 4 shows that the neural network
can capture the coarse features of the phase diagram even
for a single disorder realization. The fact that the neural
network has gained a regression scheme alternate to the
manual modelling of statistical distributions over disor-

der realizations implies that one can use it as a tool to
quickly explore large areas of phase space to map out new
non-equilibrium phase diagrams.

FIG. 4. The 2D phase diagram where the fully trained net-
work has been tested on a single disorder realization.

Summary and Outlook – Here we exploit the abil-
ity of neural networks to distill characteristic features
from noisy data in order to extract information from the
entanglement spectra associated with out-of-equilibrium
phases. To this end, we built a neural network and
employed it to process entanglement spectra from a
transverse field Ising model with disorder, a poster-child
model system that can be in one of three distinct out-of-
equilibrium phases. Our neural network, being trained
with typical data associated with three limiting points
in the phase space, was able to output a phase dia-
gram that is consistent with theoretical expectations.
Moreover, using a simplicial geometry construction to
quantify network’s degree of confusion, we were able to
extract the phase boundary with significantly sharper
resolution compared to entanglement entropy-based ap-
proaches. Any effort to better understand this transition
and/or the possibility of an intervening sliver of thermal
phase between the two MBL phases will benefit from a
method for obtaining a sharper determination of phase
boundaries, which our work provides.

The significance of what we have achieved is multi-
faceted. First, we have demonstrated that a standard
neural network based approach can give us a sharper
look at the multi-partite phase boundary by using the
geometric measure of confusion C that we introduced.
This is the first example, to the best of our knowledge,
that a neural network based approach in a standard setup
outperformed conventional approach in terms of sharper
phase boundaries55. Our work paves the way for future
studies on the nature of MBL phase transitions. Sec-
ond, by having multiple neuron outputs, we were able
to a obtain tripartite phase diagram involving two dis-
tinct MBL phases with a single measurement. This is
valuable even for MBL phases where there are known
order-parameters49 as in the model we considered. How-
ever, this multi-neuron output approach will be even
more valuable when dealing with new out-of-equilibrium
phases without a priori knowledge of suitable order pa-
rameters.
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perform conventional methods, after adding a non-trivial
input that penalizes lack of confidence to the standard

setup in the training process.
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