
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Structure and Metallicity of Phase V of Hydrogen
Bartomeu Monserrat, Neil D. Drummond, Philip Dalladay-Simpson, Ross T. Howie, Pablo

López Ríos, Eugene Gregoryanz, Chris J. Pickard, and Richard J. Needs
Phys. Rev. Lett. 120, 255701 — Published 18 June 2018

DOI: 10.1103/PhysRevLett.120.255701

http://dx.doi.org/10.1103/PhysRevLett.120.255701


Structure and metallicity of phase V of hydrogen

Bartomeu Monserrat,1, 2, ∗ Neil D. Drummond,3 Philip Dalladay-Simpson,4 Ross T. Howie,4
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A new phase V of hydrogen was recently claimed in experiments above 325 GPa and 300 K. Due to
the extremely small sample size at such record pressures the measurements were limited to Raman
spectroscopy. The experimental data on increase of pressure shows decreasing Raman activity and
darkening of the sample, which suggests band-gap closure and impending molecular dissociation,
but no definite conclusions could be reached. Furthermore, the available data is insufficient to
determine the structure of phase V, which remains unknown. Introducing saddle-point ab initio
random structure searching (sp-AIRSS), we find several new structural candidates of hydrogen
which could describe the observed properties of phase V. We investigate hydrogen metallisation in
the proposed candidate structures, and demonstrate that smaller band gaps are associated with
longer bond lengths. We conclude that phase V is a stepping stone towards metallisation.

PACS numbers: 63.20.Ry, 74.62.-c, 62.50.-p, 67.80.F-

The study of dense hydrogen is important to funda-
mental physics and astrophysics [1–4]. Currently the
most interesting question relates to the metallisation and
dissociation of molecular hydrogen under pressure, which
has not yet been achieved in the solid state, even though
it was first proposed in 1935 [5]. The known phases I, II,
III, and IV/IV′ of solid hydrogen, which have been char-
acterised extensively experimentally [6–10] and theoreti-
cally [11–19], exhibit molecular bonds and are insulating.

Dalladay-Simpson and co-workers recently reported
Raman spectroscopy experiments on H2, D2, and HD
up to pressures of 388 GPa at 300 K [20]. In these ex-
periments, they identified a new phase V of H2 and HD
above 325 GPa and at 300 K, which was suggested to be
at the onset of dissociation and could therefore represent
a stepping stone towards full metallisation. Several ex-
perimental reports followed, claiming metallisation of H2

under different pressure-temperature conditions [21, 22],
but the validity of these experiments is yet to be con-
firmed [23, 24]. In this Letter, we focus on phases IV,
IV′, and V as described in Refs. [10, 20].

On the theoretical front, a number of candidate
structures have been proposed to explain the observed
experimental phases of high-pressure hydrogen up to
300 GPa [11, 13, 14, 25]. Of these, the monoclinic C2/c
structure is currently the best candidate for phase III
around 300 GPa [11, 25], as it exhibits Raman and infra-

red (IR) spectra consistent with those observed experi-
mentally. The monoclinic Pc structure is the best candi-
date for phase IV [13, 14] due to its mixed layered nature
that leads to the two vibron peaks observed experimen-
tally. Recent quantum Monte Carlo and free energy cal-
culations have confirmed these phases to be energetically
favourable in the pressure range in which phases III and
IV are observed [19]. The most stable atomic hydrogen
candidate structure is tetragonal and has space group
I41/amd [11, 12, 17, 18]. Despite the large number of
candidate structures known for high-pressure hydrogen,
none provides a good model for the recent experimental
observations at pressures above about 300 GPa.

Discovering candidate structures using searching meth-
ods has been successful in many systems, particularly
at high pressure [26–30]. As an example, the lowest-
enthalpy candidate structures for phases II, III, and IV
of hydrogen have been found using the ab initio ran-
dom structure searching (AIRSS) method [11, 13, 14].
The experimental discovery of phase V, for which there
is no obvious candidate structure, prompts the question
of whether it is necessary to go beyond current structure
searching methods in this case.

Standard structure searching methods such as AIRSS
are restricted to structures associated with minima of
the potential energy landscape. However, thermodynam-
ically stable structures associated with saddle points that
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are dynamically stabilised by anharmonic nuclear motion
are known to exist [31, 32]. The high-temperature cubic
perovskite phase of BaTiO3 provides a well-known exam-
ple [31, 33].

A variety of computational methods has been used to
determine the dynamical stability of such structures, in-
cluding Monte Carlo [33], molecular dynamics [34, 35],
path integral molecular dynamics [36, 37], and local an-
harmonic vibrational methods [38–42]. These methods
can determine the dynamical stability of a known saddle-
point structure but they have not been used to find pre-
viously unknown saddle-point structures. The following
question arises: can we devise a systematic approach to
searching for previously unknown structures associated
with saddle points of the energy landscape? The large
nuclear effects of hydrogen make it an ideal system in
which to explore this possibility.

We address these questions using saddle-point ab
initio random structure searching (sp-AIRSS). Saddle-
point structures stabilised by anharmonic nuclear mo-
tion are typically of higher symmetry than their broken-
symmetry counterparts. Based on this observation, we
use sp-AIRSS to impose high-symmetry constraints dur-
ing structure searches. For example, imposing cubic sym-
metry on BaTiO3, leads to the known cubic phase, but
removing the symmetry constraints leads instead to the
rhombohedral phase. The symmetry constraints bias the
search towards the high-symmetry structures that are
expected to be stable when the vibrational amplitudes
are large. We emphasise that this strategy enables the
discovery of structures which cannot be found in uncon-
strained searches because correspond to minima of the
free energy landscape but not of the static lattice energy
landscape. We then remove the symmetry constraints
and relax the reference structure using an anharmonic
vibrational method. In this work we have used the vibra-
tional self-consistent field method of Ref. [41], but any of
the available anharmonic methods may be applicable at
this stage of the calculation [33–42]. The structure may
then relax to a minimum or saddle point of the potential
energy landscape.

The lowest-enthalpy known hydrogen structures have
monoclinic symmetry with space groups C2/c (model for
phase III) and Pc (model for phase IV) [11, 13, 14]. To
search for new candidate structures we have therefore
performed sp-AIRSS searches imposing space groups of
orthorhombic or higher symmetry. The searches have
led to the discovery of three new energetically compet-
itive structures at pressures for which phase V is ob-
served. These structures have orthorhombic symmetry
with space groups Pca21, Pna21, and Pcaa, and 48
atoms in the primitive cell. Pca21 and Pna21 are mixed
layered structures similar to Pc in which alternate layers
exhibit shorter and longer molecular bond lengths, result-
ing in two vibron peaks in the Raman and IR spectra.
Pcaa has a single type of layer.

Our analysis in this work is based on these three new
structures, together with the previously reported struc-
tures C2/c [11], Cmca-4 and Cmca-12 [11] (where 4 and
12 indicate the number of atoms in the primitive cell),
Pc [13, 14] and Ibam [11]. The C2/c and Cmca struc-
tures model phase III and all theoretical methods predict
that C2/c is more stable at lower pressures and Cmca at
higher pressures, but the precise pressure above which
Cmca becomes stable is highly-dependent on the level
of theory used. An hexagonal structure of space group
P6122 has recently been proposed as a candidate for
phase III at pressures below 200 GPa [25], but in this
work we focus on higher pressures, and therefore do not
include it in our analysis. The Ibam structure is an ex-
treme member of the family of mixed structures, in which
the weakly-bound layer is graphene-like and molecular
bonds are no longer present.

Of all structures considered, Pna21 and Pca21 are
dynamically unstable at the harmonic vibrational level,
and their broken-symmetry counterpart is a monoclinic
structure. Ibam is also dynamically unstable, while the
rest are dynamically stable. Note that unless sp-AIRSS
had been used, Pca21 and Pna21 would have fallen into
the corresponding broken-symmetry monoclinic struc-
ture, and would have gone unnoticed. The symmetry
constraints prevent this and allow the potential discovery
of new structures stabilised by anharmonic vibrations.

We have used first-principles methods based on den-
sity functional theory (DFT) as implemented in the
castep [43] code to calculate the relative stability of
the eight structures under consideration. We have used
both the BLYP exchange-correlation functional [44, 45],
which has been shown to be accurate for the descrip-
tion of molecular hydrogen structures [46], and the PBE
exchange-correlation functional [47], which we find to
favour atomic phases compared to the BLYP functional.
Due to the small energy differences between competing
structures of only a few meV, the resulting phase dia-
grams are sensitive to the level of theory used [19, 46, 48].
We therefore also perform selected diffusion Monte Carlo
(DMC) calculations using the casino package [49] to es-
tablish the validity of our conclusions based on the DFT
results. To calculate the vibrational contribution to the
energy including anharmonic contributions we use the
method of Refs. [41, 50]. Further details of the first prin-
ciples calculations are provided in the Supplemental Ma-
terial [51].

In Figs. 1a and 1b we report static lattice enthalpies,
zero-temperature enthalpies (including quantum zero-
point motion), and Gibbs free energies at 300 K rela-
tive to C2/c using DFT. The static lattice enthalpies
of Pca21, Pna21, and Ibam are shown as dashed lines
to indicate dynamical instability at the harmonic level
corresponding to saddle points of the potential energy
landscape. All three structures become dynamically sta-
ble when lattice vibrations are included. We also show
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FIG. 1. Relative enthalpies using the (a) BLYP and (b) PBE DFT functionals, and using (c) DMC. The DFT results are at
the static lattice level, at T = 0 K (including zero-point motion), and at T = 300 K, and the dashed lines in the static lattice
diagrams indicate enthalpies corresponding to structures at saddle-points of the energy landscape. The DMC results are at the
static lattice level, and the dashed lines between the DMC points are a guide to the eye only.

selected static lattice DMC calculations in Fig. 1c.

For both BLYP and PBE calculations, we observe that
the Cmca-4 structure is the lowest in energy at the higher
pressures studied. This is consistent with earlier DFT
studies, but we note that using more accurate DMC cal-
culations de-estabilises this structure and removes it from
the phase diagram (see Fig. 1c). The Cmca-12 structure
is also de-estabilised within DMC, although to a smaller
degree than the Cmca-4 structure.

The BLYP results show that, of the mixed layered
structures, Pca21 is the most competitive energetically at
both zero and 300 K, becoming more stable than C2/c
at pressures of about 420 GPa. The PBE results also
favour Pca21 as the most stable mixed layered structure,
but it becomes more stable than C2/c at significantly
lower pressures of about 300 GPa, consistently with the
observation that PBE favours atomic phases compared to
molecular phases (Pca21 has alternate layers with longer
bond lengths than those observed in C2/c). We also note
that, at the PBE level, Pc does not exist above about
375 GPa, as it falls into the Cmca-4 structure. Finally,
we note that the Pcaa structure, which is not energeti-
cally competitive at the BLYP level, becomes more com-
petitive at the PBE level, a fact that we again attribute
to the longer bond lengths exhibited by Pcaa when com-
pared to C2/c. Our static DMC calculations combined
by the DFT vibrational energy estimates confirm that
Pca21 remains energetically competitive as a candidate
structure of high pressure hydrogen (see Supplemental
Material [51]).

The experimental Raman spectrum of phase V is com-
pared to the theoretical harmonic spectra of Pc and
Pca21 calculated using the PBE functional in Fig. 2. Fig-
ure 2a shows a comparison of the Raman intensities at
374 GPa. In the high-frequency regime, the frequency of
the experimental ν2 vibron agrees with those of Pc and
Pca21. The frequency of the ν1 vibron is marginally bet-
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FIG. 2. (a) Raman spectra of Pc, Pca21, and phase V at
374 GPa. The absence of data in the range 1500–1900 cm−1

arises from the strong signal from the diamonds at these fre-
quencies. (b) Pressure dependence of the frequencies of the
most intense Raman peaks of Pc, Pca21, and phase V.

ter reproduced by Pc than by Pca21. We also note that
Magdău and Ackland showed that anharmonic contribu-
tions push the ν2 vibron to higher energies in Pc [16], and
a similar behaviour in Pca21 would bring the latter into
better agreement with experiment. At the low-frequency
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regime the L1 and L4 modes of phase V are in better
agreement with Pca21 than with Pc. The L2 mode,
which disappears upon entering phase V, is present in
Pc but missing in Pca21.

The pressure dependence of the Raman peaks is shown
in Fig. 2b, with phase IV below 325 GPa, and phase V
at higher pressures. The pressure dependence of the ν2
vibron is well-reproduced by both Pc and Pca21. The
frequency of the low-energy vibron has a pressure de-
pendence of −1.4 cm−1/GPa in phase V above 325 GPa,
which is much weaker than that of phase IV at lower pres-
sures (note the change in slope for ν1 around 325 GPa).
The pressure dependence of ν1 in Pc and Pca21 is too
weak at pressures below 325 GPa, suggesting that they
are not good candidates for phase IV. However, we note
that, as discussed earlier, anharmonic effects significantly
affect this frequency [16], and therefore we cannot discard
these structures as candidates for phase IV. The pressure
dependence of the low frequency part of the Raman spec-
trum of phase V is better-reproduced by Pca21 than by
Pc.

A striking feature of the experimental Raman spec-
trum is the dramatic increase in the width of the L1

peak upon entering phase V, whose FWHM increases
from about 70 cm−1 at 325 GPa to about 160 cm−1 at
388 GPa. The experimental data show that the increase
in the peak width is strongly isotope dependent [20], sug-
gesting a nuclear origin for this feature. Therefore, it
could be attributed to a harmonic dynamical instability
like the one exhibited by the Pca21 and Pna21 struc-
tures.

Our Raman spectra analysis suggests that the Pca21
structure is consistent with phase V. The Raman spec-
trum of Pna21 is almost identical to that of Pc, and both
give poorer agreement with experiment than Pca21. The
C2/c, Cmca, and Pcaa structures cannot describe phase
V, as they have a unique type of bond and thus a sin-
gle vibron. Ibam is also an unlikely candidate for phase
V, as its vibron ν1 has a frequency below 2250 cm−1 in
the pressure range where phase V is observed. Details of
the Raman spectra of these phases are provided in the
Supplemental Material [51].

Overall, Pca21 is energetically competitive at the pres-
sures at which phase V has been observed, and crucially,
of all structures considered, only its Raman spectrum
is consistent with that of phase V. More generally, the
known Pc structure and the new Pna21 and Pca21 struc-
tures are plausible candidates for the high pressure hy-
drogen structures characterised by two strong vibrons,
that is, phases IV, IV′, and V.

Having discovered good candidate structures, we study
the metallicity of phase V. The study of band gap closure
and metallisation in high pressure hydrogen is a challeng-
ing problem. Band gaps are typically underestimated
by several electronvolts by Kohn-Sham DFT [52, 53],
whereas the neglect of electron-phonon coupling contri-
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FIG. 3. (a) Electronic densities of states of hydrogen candi-
date mixed layered structures Pc, Pna21, Pca21, and Ibam
at a pressure of 350 GPa. (b) Static bond lengths of the Pc,
Pna21, Pca21, and Ibam structures for the layers with longer
bonds. The bond lengths of Pc and Pna21 are indistinguish-
able.

butions tends to lead to an overestimation of the gap
size [54, 55]. These two effects alter the gap in oppo-
site directions, cancelling to some extent. We consider
static lattice DFT band structures, which contain valu-
able insights on trends amongst the different structures,
but cannot be used reliably to estimate the actual band
gap values.

Metallisation in layered hydrogen structures has been
proposed to arise from the weakly bound layers that can
be described as distorted graphene sheets [56]. Here, we
extend this analysis to mixed-layered structures, where
layers with short and long bond lengths coexist. In
Fig. 3a we show the electronic densities of states at
350 GPa for the four mixed layered structures consid-
ered in this work. Pc, Pna21, and Pca21 are all insu-
lating. Of these four structures, Pca21 has the smallest
band gap by about 0.3 eV. This is a consequence of the
longer bond length in the weakly bound layers, as shown
in Fig. 3b. The bond lengths of all of these structures in
the strongly-bound layers are comparable.

Molecular dissociation is more pronounced in Ibam,
as the weakly bound layers are graphene-like, and the
molecular character is lost. This is shown by the longer
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bond lengths exhibited by Ibam in the graphene sheets
(Fig. 3b). The frequency of the ν1 vibron in Ibam in-
creases with pressure, as expected from the decreasing
bond length of the graphene sheets. In contrast, the in-
crease in bond length with pressure in Pc, Pna21, and
Pca21 indicates that the pressure dependence of the ν1
vibron in these structures is qualitatively different from
that of Ibam, and consistent with the experimental ob-
servation of phase V. Ibammight become stable at higher
pressures, although our DFT calculations do not support
this conjecture.

For completeness, we emphasize that at 0 K, the
metallic atomic I41/amd structure is predicted to be-
come thermodynamically stable at a pressure of around
400 GPa [17, 18]. It would be interesting to assess the
relative stability of I41/amd with respect to the mixed
structures around room temperature, but this is beyond
the scope of the present work.

Overall, our energetic and spectroscopic results show
that Pca21 is a promising model structure for hydrogen
phase V. It exhibits longer bond lengths compared to
those of other similar structures, suggesting that phase V
is a stepping stone towards the metallisation of hydrogen.
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P. López Ŕıos, C. J. Pickard, and R. J. Needs, “Quantum
Monte Carlo study of the phase diagram of solid molec-
ular hydrogen at extreme pressures,” Nat. Commun. 6,
7794 (2015).

[20] Philip Dalladay-Simpson, Ross T. Howie, and Eugene
Gregoryanz, “Evidence for a new phase of dense hydrogen
above 325 gigapascals,” Nature 529, 63 (2016).

[21] Ranga P. Dias and Isaac F. Silvera, “Observation of the
Wigner-Huntington transition to metallic hydrogen,” Sci-

https://doi.org/10.17863/CAM.23386
mailto:bm418@cam.ac.uk
http://link.aps.org/doi/10.1103/PhysRevLett.21.1748
http://link.aps.org/doi/10.1103/RevModPhys.52.393
http://link.aps.org/doi/10.1103/RevModPhys.84.1607
http://link.aps.org/doi/10.1103/RevModPhys.84.1607
http://scitation.aip.org/content/aip/journal/ltp/39/5/10.1063/1.4807051
http://scitation.aip.org/content/aip/journal/ltp/39/5/10.1063/1.4807051
http://scitation.aip.org/content/aip/journal/jcp/3/12/10.1063/1.1749590
http://scitation.aip.org/content/aip/journal/jcp/3/12/10.1063/1.1749590
http://link.aps.org/doi/10.1103/PhysRevLett.47.39
http://link.aps.org/doi/10.1103/PhysRevLett.61.857
http://link.aps.org/doi/10.1103/PhysRevLett.61.857
http://dx.doi.org/10.1038/nmat3175
http://link.aps.org/doi/10.1103/PhysRevLett.108.125501
http://link.aps.org/doi/10.1103/PhysRevB.86.214104
http://link.aps.org/doi/10.1103/PhysRevB.86.214104
http://dx.doi.org/10.1038/nphys625
http://dx.doi.org/10.1038/nphys625
http://link.aps.org/doi/10.1103/PhysRevB.84.144515
http://link.aps.org/doi/10.1103/PhysRevB.85.214114
http://link.aps.org/doi/10.1103/PhysRevB.85.214114
http://link.aps.org/doi/10.1103/PhysRevB.86.059902
http://scitation.aip.org/content/aip/journal/jcp/137/7/10.1063/1.4745186
http://link.aps.org/doi/10.1103/PhysRevB.87.174110
http://link.aps.org/doi/10.1103/PhysRevB.87.174110
http://link.aps.org/doi/10.1103/PhysRevLett.112.165501
http://link.aps.org/doi/10.1103/PhysRevLett.114.105305
http://link.aps.org/doi/10.1103/PhysRevLett.114.105305
http://dx.doi.org/10.1038/ncomms8794
http://dx.doi.org/10.1038/ncomms8794
http://dx.doi.org/10.1038/nature16164
http://science.sciencemag.org/content/355/6326/715


6

ence 355, 715–718 (2017).
[22] M. I. Eremets, A. P. Drozdov, P. P. Kong, and H. Wang,

“Molecular semimetallic hydrogen,” arXiv:1708.05217
(2017).

[23] Xiao-Di Liu, Philip Dalladay-Simpson, Ross T. Howie,
Bing Li, and Eugene Gregoryanz, “Comment on “Ob-
servation of the Wigner-Huntington transition to metallic
hydrogen”,” Science 357, eaan2286 (2017).

[24] Alexander F. Goncharov and Viktor V. Struzhkin, “Com-
ment on “Observation of the Wigner-Huntington tran-
sition to metallic hydrogen”,” Science 357, eaam9736
(2017).

[25] Bartomeu Monserrat, Richard J. Needs, Eugene Grego-
ryanz, and Chris J. Pickard, “Hexagonal structure of
phase III of solid hydrogen,” Phys. Rev. B 94, 134101
(2016).

[26] Chris J. Pickard and R. J. Needs, “High-pressure phases
of silane,” Phys. Rev. Lett. 97, 045504 (2006).

[27] Artem R. Oganov and Colin W. Glass, “Crystal struc-
ture prediction using ab initio evolutionary techniques:
Principles and applications,” J. Chem. Phys. 124, 244704
(2006).

[28] Yanchao Wang, Jian Lv, Li Zhu, and Yanming Ma,
“Crystal structure prediction via particle-swarm opti-
mization,” Phys. Rev. B 82, 094116 (2010).

[29] Chris J. Pickard and R. J. Needs, “Ab initio ran-
dom structure searching,” J. Phys. Condens. Matter 23,
053201 (2011).

[30] David C. Lonie and Eva Zurek, “Xtalopt: An open-
source evolutionary algorithm for crystal structure pre-
diction,” Comput. Phys. Commun. 182, 372–387 (2011).

[31] M. E. Lines and A. M. Glass, Principles and Applications
of Ferroelectrics and Related Materials (Oxford Univer-
sity Press, 2001).
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