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Willis coupling in acoustic materials defines the cross-coupling between strain and 

velocity, analogous to bianisotropic phenomena in electromagnetics. While these effects 

have been garnering significant attention in recent years, to date their effects have been 

considered mostly perturbative. Here, we derive general bounds on the Willis response of 

acoustic scatterers, show that they can become dominant in suitably designed scatterers, 

and outline a systematic venue for the realistic implementation of maximally bianisotropic 

inclusions. We then employ these inclusions to realize acoustic metasurfaces for sound 

bending with unitary efficiency. 
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The emergence of metamaterials and metasurfaces has enabled new opportunities to 

manipulate electromagnetic waves, providing a rich platform for extreme light-matter 

interactions [1]-[5]. The fascinating developments in this field have stimulated efforts to 

apply the same principles to waves of different physical nature, resulting in acoustic and 

elastic metamaterials. Owing to their unique properties, acoustic metamaterials have 

enabled unprecedented sound-matter interactions, such as cloaks of inaudibility, acoustic 

superlenses, acoustic collimators, and nonlinear acoustic phenomena [6]-[14]. In order to 

realize these artificial materials, various subwavelength resonant inclusions, such as 

Helmholtz resonators [7],[15], space-coiling structures [16],[17] and membrane-type 

inclusions [18] have been explored, in order to provide the required enhanced dipole and/or 

monopole responses.  

In electromagnetic metamaterials, an additional knob to tailor the overall metamaterial 

response has been provided by magneto-electric coupling, or bianisotropy, which enables 

the coupling of magnetic and electric phenomena at the subwavelength scale. In direct 

analogy, Willis coupling has been explored in elastodynamics [19]-[22] and acoustics [23]-

[25] since the 80s, and it has been recently become of interest in the context of acoustic 

metamaterials. Willis coupling describes the interaction between acoustic pressure and 

particle velocity in some acoustic media, and so far it has been treated as a higher-order 

perturbative phenomenon [22]-[25]. In order to exploit to its full extent bianisotropy in 

elastodynamics and acoustics, it would be ideal to realize metamaterial inclusions with 

large, ideally maximum, Willis coupling. 

In this Letter, we analyze passive bianisotropic acoustic scatterers, defining a 

polarizability tensor that relates, in the most general linear scenario, monopole and dipole 
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moments to the local pressure and velocity. We derive tight bounds on the Willis coupling 

of small acoustic scatterers imposed by reciprocity and energy conservation, with direct 

implication on the maximum acoustic bianisotropy achievable in metamaterials formed by 

such inclusions. These bounds are solely determined by frequency, and are independent of 

the direct polarizability terms, in contrast to other recent works on bianisotropic 

metamaterials in electromagnetics [26]. Our bounds show that the pressure-velocity 

coupling can, in optimized inclusions, be of the same order as the direct polarizability terms. 

Then, we introduce a general framework to design subwavelength inclusions providing 

maximum Willis coupling. Finally, we apply these optimal inclusions to design 

bianisotropic metasurfaces that overcome the inherent efficiency limitations of 

conventional metasurfaces for arbitrary wavefront manipulation. 

Consider a subwavelength particle located in a fluid background and excited by an 

acoustic wave. Since the particle is small, its scattering can be described by the 

superposition of acoustic monopole and dipole moments. For non-bianisotropic linear 

inclusions, the monopole is proportional to the local pressure field, while the dipole is 

proportional to the local velocity. In the case of Willis coupling, both pressure and velocity 

fields can excite monopole and dipole moments, and their general relation can be written 

as 

 .
pp pv

vp vv

M p p      
= =       

      

α
α

D v vα α
  (1) 

Here 
V

M dV=   is the acoustic monopole, 
V

dV= D r  is the acoustic dipole moment, 

p  is the local pressure, v is the local velocity, α  is the polarizability tensor and   is 
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the density distribution in the particle. The off-diagonal terms pvα  and vpα  in the 

polarizability tensor, responsible for Willis coupling, arise when the particle is 

geometrically asymmetric. 

Based on these general relations, we study fundamental constraints imposed by 

reciprocity and energy conservation over the polarizability tensor of an acoustic inclusion. 

For simplicity, and without loss of generality, we assume a two-dimensional (2D) scenario, 

for which the polarizabilities in Eq. (1) can be explicitly written as 

 .

pp pv pv

x y

vp vv vv

x x xx xy x

vp vv vv

y y yx yy y

M p

D v

D v
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=     
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    

  (2) 

We extend our results to 3D in [27]. Let us first examine the constraints on α  imposed by 

energy conservation. For passive scatterers, the total scattered power must be less or equal 

than the extinction power ( )* * *

s s s i i sp v dA p v p v dA  − +   . For a subwavelength 

scatterer, monopole and dipole moments dominate the scattering, so this relation can be 

explicitly written as [27] 

 ( ) ( ) ( )
*2 222 *

0 0 0 0 02 8Im 2 .
2

x y

p
M ik D ik D c v ik D M 

 
+ +   − 

 
  (3) 

Substituting the monopole and dipole moment expressions from Eq. (2), we get a condition 

over the polarizabilities of a general acoustic bianisotropic particle [27] 

 ( ) ( )2 * *Diag Diag 4 ,T Ti       −
   

α α α α   (4) 

where α  is the normalized polarizability tensor defined as 
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This normalization ensures that all terms in the tensor have the same units. For a reciprocal 

acoustic particle, the normalized polarizability tensor satisfies T − =α α  [27].  

In the non-bianisotropic limit, i.e., in the absence of off-diagonal terms in Eq. (5), the 

reciprocity condition is always satisfied, and Eq. (4) requires 

 ( ) ( ) ( )2 2Im 1/ / 8 and Im 1/ Im 1/ / 8.pp vv vv

xx yy       − =  −   (6) 

These constraints on the imaginary part of the polarizability physically correspond to 

radiation loss in the particle, and the inequalities become equalities when the particle has 

no absorption. In the general bianisotropic scenario, we can replace the full polarizability 

tensor into Eq. (4), resulting in 
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Since 
vp

x   and 
vp

y   cannot be negative, from the first conditions we derive the same 

bound as Eq. (6) on the diagonal terms of the polarizability tensor, indicating that these 

conditions are general, and apply equally well to bianisotropic particles.  

The first condition in Eq. (7) imposes also a general bound on the coupling terms. If we 

assume that the particle is only resonant in the y direction, so that 
vp vp

y x   , this bound 

simplifies into 
24 .vp

y −   Interestingly, Eq. (7) implies that this limit can be reached 

only when the particle is at resonance, i.e., when 21/ / 4vv

yy i  = −  and 
21/ / 4pp i  = −  

are purely imaginary. Substituting these conditions back into the polarizability tensor, we 

find that optimal Willis scatterers, with maximum bianisotropic coupling, satisfy 
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 (8) 

Interestingly, Eq. (8) confirms that Willis coupling can become of the same order as the 

diagonal elements of the polarizability tensor, opening new opportunities to enable strong 

bianisotropy in small acoustic scatterers and metamaterial inclusions. In [27], we extend 

this analysis and the associated bounds to 3-D inclusions, deriving the analogous bound 

2 3

0 0

6vp

y
c k


   . 

From Eq. (7), we can derive a general bound on the cross-coupling polarizability terms 
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If we suppose again a dominant response along y, so that 0vp

x   , 0vv

xx    and 0vv

xy   , 

this condition simplifies into 
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,                    (10)            

indicating that, while there is no limit to the normalized Willis response compared to the 

direct response of the scatterer to pressure and velocity, at resonance, when 
vp

x   reaches 

its maximum value 24− , we get 

 vp pp vv

x yy     ,   (11) 

As an excursus, explorations on the bounds of maximum bianisotropy for small scatterers 

has been explored in the past years for electromagnetic waves. In [26],[28],[29], a bound 

consistent with Eq. (11), but for the electromagnetic response, was derived under the 

assumption of a single coupled electromagnetic resonance in the scatterer. In [30], on the 
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other hand, it was shown numerically that particles operating far from their resonance 

frequency or supporting more than one resonance may surpass this bound. Our general 

theory, if extended to electromagnetics, fully addresses this issue, showing that only Eqs. 

(7) generally apply, but under the assumption of a single resonant mode the more stringent 

condition (11) is satisfied.  

This general analysis shows that Willis coupling in a small resonant scatterer can be as 

strong and important as the diagonal terms of the polarizability tensor. In order to exploit 

the possibilities offered by bianisotropic coupling and create unprecedented sound-matter 

interactions, we need to design scatterers that approach the fundamental bound derived 

here. In the following, we show that it is possible to systematically design resonant particles 

that operate at the bound of maximum Willis coupling coefficient. To shed light into the 

physical mechanism of bianisotropic coupling in acoustics, consider a 2D cylindrical 

particle with maze-like channels, shown in Fig. 1a, excited by a standing wave at a pressure 

node, at which the applied velocity has its maximum. In conventional acoustic 

subwavelength structures, such a purely velocity field excitation induces only a dipole 

response. However, if the particle is bianisotropic, an applied background velocity field 

can generate also a monopole contribution. Since our particle is generally asymmetric, the 

vibration going in and out of the two channel outlets can have different volume velocities 

(2A and 2B in Fig. 1b). The overall polarization due to the external excitation can be 

decomposed into dipole and monopole moments, which correspond to the contributions 

sketched in the center and right column of Fig. 1b.  

Let us now consider two special cases. Figure 1c shows the case A B=  (i.e., symmetric 

channel apertures). In this case, only the dipole moment is excited by the applied velocity 
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field, and therefore the particle has zero Willis coupling. Interestingly, this property is 

independent of the asymmetry of the internal maze of the particle, and it is guaranteed to 

first-order approximation as long as the channel width is constant. On the other hand, Fig. 

1d shows the case when the apertures are extremely asymmetric, with 0B = . For this 

scenario, the external velocity field produces a dipole response and, in addition, a non-zero 

monopole response, a direct evidence of Willis coupling.  

The insets in Figs. 2a, 2b, and 2c show different geometries providing different levels 

of bianisotropic coupling. All inclusions have a 5 cm radius and only resonate in the y-

direction. The particle in Fig. 2a has a constant channel width, therefore the bianisotropic 

response is very weak, as seen in the figure. On the other hand, the particle in Fig. 2b is 

asymmetric, but its bianisotropic response does not reach the bound introduced in the 

previous section (dashed line in each figure), because the asymmetry is not strong. Finally, 

the particle in Fig. 2c, provides strong bianisotropic coupling, reaching the theoretical 

bound at all three resonance frequencies, since one of the apertures is removed. In Fig. 2d, 

we show the case of a bianisotropic resonant particle with similar asymmetric response in 

both x- and y- directions. In this case, the general bound in Eq. (7) applies to the sum of the 

two off-diagonal polarizability elements, where vp vp

x y  = . Details on the polarizability 

retrieval method used to calculate the results in Fig. 2 are provided in [27], and all 

simulations have been performed using [31]. The results in Fig. 2 refer to the case of 

lossless materials. Figure S2 in [27] considers realistic loss in air, showing that, while loss 

prevents to reach the ideal bound, Willis coupling can stay very strong and comparable 

with the direct polarizability terms, even in presence of realistic loss.  
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The systematic design of optimal Willis scatterers introduced here enables translating 

many of the fascinating opportunities enabled by bianisotropy from electrodynamics to 

acoustics. In electromagnetic metamaterials, bianisotropic inclusions have been exploited 

to realize asymmetric absorbing metasurfaces, one-way transparent metasurfaces, and 

metagratings for perfect control of reflection and refraction [32]-[34]. Exploring analogous 

effects in acoustics can translate many of these applications to manipulate sound in 

unprecedented ways. Recently, in electrodynamics it was revealed that conventional 

gradient metasurfaces designed based on generalized laws of reflection and refraction [35], 

suffer from fundamental limits on conversion efficiency. A similar limitation has been 

found in the case of acoustic gradient metasurfaces [36]-[37]. In electrodynamics, 

bianisotropic metagratings have been proposed to address this issue. These structures are 

periodic arrays of properly designed bianisotropic inclusions that enable ultimate control 

over the reflected wave [34], with unitary efficiency even for anomalous reflection towards 

very large angles.   

Here, we translate this idea into acoustics and design an acoustic metagrating based on 

optimal Willis scatterers capable of rerouting the reflected waves into extreme angles with 

unitary efficiency. Figure 3 shows the schematic of the designed metagrating, which is 

composed of a periodic array of the Willis scatterers, similar to Fig. 2(c) with only one 

outlet, located at a distance from a hard plate. As an example, we design a metagrating that 

reroutes a normally incident wave to ref (-1) 72 = = −  with unitary efficiency. When a 

periodic array of bianisotropic inclusions over a hard plate is illuminated with a normally 

incident wave, different Floquet diffraction modes can scatter power away. The periodicity 

(1)sinb  =  of the metasurface can be chosen in such a way that the -1 Floquet channel 
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is aligned with the desired direction of reflection (i.e., (1) (-1) 72 = − = ). In this scenario, 

in addition to specular reflection (i.e., 0 channel), -1 and +1 Floquet channels can, in 

principle, carry power away from the surface, and all other channels are evanescent waves 

that cannot carry energy away. Therefore, the metasurface can potentially scatter the 

incident power only through the -1, 0, and +1 diffraction order. Next, we design each 

scatterer in the array in such a way that its scattering towards the specular direction (i.e., 0 

channel) cancels the direct reflection of the incident wave from the hard plate, and such 

that its scattering in the +1 direction is zero. As a result, all the incident wave is necessarily 

rerouted to the only available reflection channel, the -1 Floquet order. Fig. 3(b) presents 

the calculated reflection spectrum for each Floquet channel, calculated with numerical 

simulations. When the operation frequency is around 2404 Hz, for which the Willis 

coupling hits a resonance, all incident energy is reflected into the -1 Floquet order, and 

anomalous reflection with unitary efficiency is achieved.  

In conclusion, we have introduced an analytical model for general acoustic scatterers. 

We studied the restrictions imposed by reciprocity and energy conservation on their 

polarizabilities, and derived tight theoretical bounds for the acoustic bianisotropic coupling 

coefficient. It was proven that bianisotropic coupling in acoustics can be of the same order 

as the diagonal components of the polarizability tensor. This finding paves the way to 

translate many fascinating opportunities enabled by bianisotropy from electrodynamics to 

acoustics. Furthermore, we proposed a systematic approach to design realistic scatterers 

that provide maximum bianisotropic coupling, reaching the theoretical bound introduced 

in this Letter. As an application of the proposed inclusions, we employed them as building 

blocks to realize an acoustic metagrating that reroutes a normally incident wave to extreme 
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Fig. 1. Physical interpretation of bianisotropic coupling for an acoustic bianisotropic 

particle. (a) A general bianisotropic particle located in a standing acoustic wave where the 

applied velocity has its maximum and the pressure is almost zero.  (b) A general acoustic 

particle: Here, 2A indicates the total volume velocity coming out from the upper outlet and 

2B indicates the total volume velocity getting into the lower outlet at a specific instant. (c) 
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Symmetric acoustic scatterer: Due to the constant width of the channel in the inclusion, the 

volume velocity for the upper and lower outlets should be identical. In this case, the 

inclusion is non-bianisotropic because the background velocity field does not excite 

monopole component.  (d) Example of an asymmetric acoustic inclusion: Since the lower 

outlet is closed, the total volume velocity for lower outlet is zero. By decomposing the zero 

volume velocity into -A and A, we see that the background volume velocity excites both 

dipole and monopole components, respectively. 
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Fig. 2. Comparison of the cross-coupling terms for different biansiotropic inclusions 

providing different levels of bianisotropic coupling. The radius of all inclusions is 5 cm. 

(a) Inclusion with constant channel width providing no bianisotropic coupling. (b) 

Inclusion with different channel width realizing moderate bianisotropic coupling. (c) 

Inclusion with only one outlet realizing maximum bianisotropy. (d) Inclusion with 

resonance in two directions. 
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Fig. 3. (a) Schematic of the designed acoustic metagrating, and simulated distribution of 

incident and reflected pressure fields. Here the period of the grating is chosen to be 15 cm 

to ensure (-1), (0) and (1) modes are the only modes which can carry out energy, and all 

other modes are evanescent waves. The biansiotropy inclusion is 4 cm in radius. For a 

normally incident plane wave, by choosing proper inclusion, unitary reflections can be 

achieved as shown in the left panel. (b) Normalized reflection spectrum for different 

Floquet channels. When the operation frequency is near 2404 Hz, all incident energy is 

reflected into -1 Floquet channel and unitary reflection is achieved. 


