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Since the first observation of odd and even high-order harmonics generated from ZnO crystals in
2011, the dependence of the harmonic yields on the orientation of the laser polarization with respect
to the crystal axis has never been properly interpreted. This failure has been traced to the lack
of correct account of the phase of the transition dipole moment between the valence band and the
conduction band. Using a simple one-dimensional (1D) two-band model, here we demonstrate that
the observed odd harmonics is directly related to the orientation dependence of the magnitude of the
transition dipole, while even harmonics is directly related to the phase of the transition dipole. Our
result points out the essential role of complex transition dipole moment in understanding harmonic
generation from solids that has long been overlooked so far.

High-order harmonic generation (HHG) resulting from
the interaction of an intense laser field with atomic or
molecular gases has led to the emergence of attosecond
physics and the rapid advance in ultrafast science in the
last decade. HHG from a crystalline solid has come along
much later, not until the first observation in 2011 on ZnO
[1]. Since then, HHG from many solids, including ZnO
[1–5], MgO [6–8], SiO2 [9–11], GaSe [12–14], MoS2 [15],
graphene [16, 17] and rare-gase solids of Ar and Kr [18],
have been reported. Like gas-phase HHG before it, har-
monics from solids can be used to generate isolated at-
tosecond pulses, but with a more compact design since
it requires much lower driving laser intensities, typically
a few TW/cm2 or less. At the same time, like in atoms
and molecules, HHG from solids offers the opportunities
for probing the structure of solids. Indeed, it has been
touted that harmonics from solids can be used to recon-
struct the electronic band structure [4, 19] and atomic
orbitals inside the crystal [6] using all-optical measure-
ments. However, such optimism is premature since much
is still unknown about HHG in solids. Experiments using
driving lasers from visible to multi-THz waves each points
to different generation mechanism [1, 3, 5, 9, 10, 12].
Due to the complexity of solids, it may be too naive to

expect that a single mechanism can interpret high har-
monic generation from all kinds of crystals. In this Let-
ter, we go back to the basic and ask whether harmonics
generated from the simplest solids can be accurately cal-
culated. These are solids that have the simplest band
structure, for example, the ZnO that was studied in 2011
[1], in particular, the harmonic yields vs the polarization
direction of the laser. These earlier experimental data
have been reproduced in another recent measurement[2].
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The choice of ZnO is appropriate since in the (11-20)
plane where the harmonics were studied, the valence and
the first conduction bands are well separated from all the
higher conduction bands, thus a simple two-band model
may be enough [5].

Before proceeding let us see what we know about ZnO.
In Fig. 1(a), we show the wurtzite ZnO crystal in real
space. The (11-20) plane is indicated by the light blue
color (gray). The XYZ axes are also shown. In Figs. 1(b)
and (c), the arrangement of Zn and O atoms on the (11-
20) plane in real space, the unit cell, and the correspond-
ing reciprocal space are displayed. On this plane, the
crystal axis is along the Z axis, and the polarization an-
gle θ of the laser is defined with respect to the crystal
axis. Fig.1(d) shows the band structure along the Γ−
M axis. The valence band and the first two conduction
bands are marked in color. Fig. 1(e) shows the magni-
tude of the transition dipole coupling between each pair
of the three bands indicated.

The orientation-dependent harmonics obtained in
Ref.[2] are displayed in Fig. 2(a). In this experiment,
the authors used a 3.8 µm mid-infrared laser. Their data
look quite similar to the earlier ones obtained by Ghimire
et al.[1] where the driving laser wavelength is 3.25 µm.

A quick glance at the experimental harmonic spectra
in Fig. 2(a) reveals that both even and odd harmonics
appear at all angles except for θ=90◦ where only odd
harmonics appear. In particular, even harmonics show
up quite clearly near θ=0◦ and 180◦. [The “irregularity”
for “harmonics” near the 10th-order was known to be due
to band fluorescence (band gap is 3.3 eV) so it will not be
considered further.] Such difference in the angular depen-
dence can be easily understood based on symmetry, by
taking examples from harmonics generated in gas-phase
atoms and molecules. In atoms, the target has intrin-
sic inversion symmetry, thus only odd harmonics exist.
Consider a molecule that is fixed in space, if the molecule
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FIG. 1. (a) The crystal structure of wurtzite ZnO and the
definition of the XYZ axes. The (11-20) plane is indicated by
light blue color. (b) The arrangement of atoms in real space
on the (11-20) plane, where O and Zn atoms are shown as
red and gray balls, respectively. The unit cell and laser po-
larization are indicated. (c) The corresponding ky = 0 plane
in the reciprocal space where high symmetry k points are
Γ=(0.0,0.0,0.0), A=(0.0,0.0,0.5) and M=(0.5,0.0,0.0). The
crystal axis is defined to be the Z-axis and the orientation
angle θ is between the crystal axis and the axis of the laser
polarization which lies on the (11-20) plane. (d) Band struc-
ture of ZnO. The valence band and the two lowest conduction
bands are highlighted. (e) The magnitude of the transition
dipole between each pair of bands considered.

does not have inversion symmetry, then even harmonics
would co-exist with odd harmonics. Such rules should
apply to solids as well. From Fig. 1(b), clearly reflection
symmetry occurs when θ=90◦, thus only odd harmonics
appear. Away from this direction, the inversion symme-
try is broken, thus even harmonics are expected, as seen
in the experiment.
Oddly enough, such self-evident prediction has not

been reproduced in theoretical calculations. Previous
modeling on the existence of even harmonics relies on
the introduction of a second harmonic in addition to the
fundamental driving laser [19], i.e., it relies on the asym-
metry of the electric field of the driving laser. In other
theoretical works, the missing of even harmonics near
0◦ and 180◦ was not addressed, see Ref. [20, 21]. In
Refs. [12, 22], it was argued that even harmonics would
appear only when multiple bands are included in the cal-
culation.
Why the obvious results that can be deduced from

symmetry alone are not reproduced even qualitatively
in all of these theoretical calculations? Clearly, if the
calculation employs approximation that violates symme-
try, then symmetry-imposed predictions would no longer
hold. As shown in our recent paper [23], the transi-

FIG. 2. (a) Orientation-dependent HHG spectra, redrawn
from the experimental data in Ref. [2]. (b) Spectra calcu-
lated from the present theory. (c) Spectra calculated from
the present theory but artificially removing the phase of the
transition dipole between the valence and conduction bands.
The efficiency of the harmonic spectra has been normalized
to the 11th-order harmonic. Parameters of the lasers used are
given in the text.

tion dipole moment is intrinsically a complex number
when the system does not possess proper symmetry. In
most theoretical calculations so far, it has been a com-
mon practice to neglect the phase of the transition dipole
which leads automatically to the disappearance of even
harmonics.

It is important to note that the band energies and tran-
sition dipole like Figs. 1(d) and 1(e) are available from
most commercial codes like the Vienna ab-initio simu-
lation package (VASP). These codes do not provide the
phase of the transition dipole. Thus the phases are sim-
ply ignored or obtained only near the Γ point using sim-
ple approximations. In these codes, the band energies
are calculated at each fixed crystal momentum k inde-
pendently by some diagonalization procedure, thus the
relative phase of eigenfunctions between neighboring k

vectors is not determined, nor is the transition dipole
phase (TDP).

In this Letter, we take into account the TDP and em-
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ploy the familiar Semiconductor Bloch Equations (SBEs)
method within the simplest 1D two-band model to cal-
culate the angle-dependent high-order harmonics from
ZnO. The results are shown in Fig. 2(b), which are to be
compared to Fig. 2(a) from the experiment of Ref. [2].
One can see the agreement between the two-band model
and the experiment is quite good. Even harmonics ap-
pear at angles away from θ=90◦ as expected. We did
try a three-band calculation and the results are essen-
tially the same (the difference is <1%). This is expected
if one looks at the dipole moment shown in Fig. 1(e).
Coupling from the valence band to C1 conduction band
is large near the Γ point, but not near the M points.
Direct coupling of the valence band with the C2 conduc-
tion band is very small. In Fig. 2(c) we also show the
two-band SBEs calculations but setting the TDP to zero
artificially. Clearly all the even harmonics disappear.
Having resolved the simple issues of the existence of

even vs odd harmonics in ZnO, we next check whether
the details of the harmonic spectra can also be explained
by the present two-band model. We defer the computa-
tional details to the Supplementary Material (SM)[24],
including the parameters used to run the VASP code for
generating the band structure and the transition dipole
shown in Figs. 1(d) and (e). Since we have not been
able to obtain the TDP from the VASP code, we chose to
calculate the TDP based on the analytical tight-binding
model. For the latter, the detail is also given in the SM,
but an outline of the method is given here.
To obtain TDP we use the semi-empirical tight-binding

model in [25]. The Bloch-type wave function is taken to
be

|n, b,k〉 = 1√
N

∑

R

e[ik·(R+tb)]|n, b,R〉 (1)

where |n, b,R〉 is the wave function localized at the site
R+ tb. Here, b stands for the four atoms in the unit cell
as indicated in Fig. 1(b), n = s, px, py, or pz, are the four
different atomic orbitals. The crystal eigenstates can be
expanded as:|λ,k〉 =

∑
n,b

Cλ
n,b|n, b,k〉. We will use only

six atomic orbitals per unit cell, namely, 1(O): px, pz;
2(O): px, pz; 3(Zn): s; 4(Zn): s . We further include only
the on-site integrals and the nearest-neighbor two-center
integrals, thus reducing to a 6×6 Hamiltonian matrix.
After the matrix is diagonalized analytically, we can ob-
tain the k-dependent transition dipole phases between
bands λ1 and λ2 from Eq. (S14) in the SM.
Note that the transition dipole moments are obtained

based on the three-dimensional (3D) wavefunctions, thus
the dipole moments contains Dx(k), Dy(k), and Dz(k).
We reduce the 3D problem to 1D problem by projecting
the 3D dipole moment onto the polarization direction of
the driving laser. Once the band energies and transition
dipole amplitude (TDA) and phase (TDP) are calculated
as described above, we solved the 1D two-band SBEs. In
the experiment, the pulse duration is estimated to be 100
fs and the intensity is about 1 to 2 TW/cm2, while in the

theory they are 65 fs and 9x1010W/cm2, respectively.
Recall that the experimental intensity refers to outside
the crystal and in the calculation it refers to within the
crystal. The intensity for the theory was chosen such
that the harmonic spectra exhibit best agreement with
the experimental data.
Next we examine the details of the measured and cal-

culated harmonic spectra. We comment that the experi-
mental data shown in Fig. 2(a) have been replotted using
the digital data provided by the authors of Ref.[2], to al-
low for better visualization when compared to the calcu-
lations. The fine features to be discussed below are not
as clearly seen in the published data in Ref.[2], especially
the weaker signals away from θ=0◦ and 180◦. In order
to make quantitative comparison, we define the strength
Pi of the ith-order harmonic by integrating the harmonic
signal from (i-0.5)ω to (i+0.5)ω, where ω is the photon
energy of the driving laser. The strengths of the 11th

and 12th harmonics are then selected for comparison in
Figs. 3(a) and (b), respectively.
We first focus on the 11th-order odd harmonic shown

in Fig. 3(a). Theory shows maxima at 0◦, 72◦, 108◦, and
180◦, and minima at 47◦ and 133◦ approximately. The
results agree well with experimental data except for an-
gles close to 90◦ where experiment has only one peak lo-
cated at 90◦. Since large dipole transition matrix element
would lead to higher ionization probability of an electron
from the valence band, we explore the angle-dependent
harmonic yields vs the square of the absolute values of
the transition dipole moment D around the Γ point. The
latter are shown in Fig. 3(c). Here, D is defined as

D =
∫ +0.05

−0.05
D(k)dk. One can clearly see the nearly identi-

cal angular modulations between Figs. 3(a) and (c). This
is a clear illustration that the angle-dependent harmonic
yield is directly related to the square of absolute value of
the angle-dependent transition dipole element.
We next focus on the angle-dependence of the 12th-

order even harmonic, see Fig. 3(b). The peaks at 0◦ and
180◦ are similar to the odd harmonics. A more obvious
valley is observed at 90◦ for both the experimental data
and the calculated results. The disappearance of even
harmonics at 90◦ is of course due to the reflection sym-
metry of the crystal along this direction where the TDP
is always zero (or a constant). Clearly one would exam-
ine how the harmonics are related to the angle-dependent
transition dipole phase. In our previous paper [23] [near
Eq. (38)] we demonstrated that the efficiency of even
harmonics depends on sin2(∆β) where ∆β = |βr − βi|,
i.e., the difference of the TDP between the subcycle exci-
tation time and the recombination time. Assuming that
electrons are excited from the Γ point where the TDP
is set to zero, then ∆β = |βr |. Since |βr| is small,
we further replace its sine function by the phase itself.
Thus in Fig. 3(d), we plot the angular dependence of

|D|2| |βr|2 to compare with Fig. 3(b). The angular de-
pendence from Fig. 3(d) matches the theoretical HHG
spectra in Fig. 3(b), which is shifted only slightly from
the experimental data. Comparing Fig. 3(c) and (d),
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the phase factor |βr |2 is two orders smaller. This also
reflects by the fact that even harmonics is about two or-
ders smaller than odd harmonics. We comment that the
TDP is given at k = 0.2 in Fig. 3(d), but its trend does
not change for other k points.

A few additional comments on Fig. 3 are in order.
First, the inset in Fig. 3(c) shows the bond angles in
ZnO. Note that the angles indicated happen to be also
where the dipole moments are also at the maximum. So
this is an example that angle-dependent harmonic sig-
nals can be directly related to the arrangement of atoms
in the crystal. Qualitatively, the observed orientation-
dependent harmonics yields observed in MgO was also
interpreted in terms of bond angles [6], but actual calcu-
lations in MgO show the maxima of the transition dipole
do not always lie along the direction of the interatomic
axis. Since the reciprocal space and real space are not
independent, it is not surprising that interpretation in
terms of real space parameters may work, but the more
fundamental quantity in describing harmonic generation
is the transition dipole. Clearly even harmonics cannot
be explained in terms of real space since the phase is in-
volved. Finally, in the SM, we show additional data for
harmonics from 13th to 16th. One can conclude that all
the odd harmonics have the same angular dependence,
and all the even harmonics have the same angular de-
pendence.

In Figs. 2(b), 3(a) and 3(b), the present 1D model
contains only parallel components of the harmonics. We
can add the contribution of the perpendicular compo-
nents calculated using the LCE model[14]. Description
of this model and the new results are shown to compare
even better with experimental data, see SM.

FIG. 3. (a), (b) Comparison of theoretical and experimen-
tal orientation-dependent harmonic strength of the 11th-order
and the 12th-order harmonics, respectively. (c) The square of
the absolute value of the transition dipole moments D vs the
orientation angle of the laser polarization direction. (d) The
same quantity in (c) but multiplied by the square of the phase
of the transition dipole at k = 0.2. See text for details.

In the SBEs model, a phenomenological dephasing
time T2 is often introduced to account for the loss of
coherence due to the interaction of the excited electron
with the crystal medium. The parameter T2 will modify
the relative strength and the “coherence” of the harmon-
ics generated. Fig. 4 shows how the harmonic yields at
θ=90◦ vs different values of T2. To obtain narrow har-
monic peaks as observed in the experiment, as shown in
Fig. 4(a), T2= 1 fs is the best. However the calculated
higher-order harmonics then drop much faster than the
experiment. If T2=2 fs is used, then each harmonic be-
comes very broad, but the relative peak heights become
closer to the observation. Fig. 4(b) shows the quantita-
tive comparison. Since the scattering of the laser-driven
electron with the crystal is expected to depend on the
momentum of the electron, we introduce a k-dependent
T2. We found that if we choose T2 to have a bell-shaped
form T2(k) = 1 + 1/[1 + exp(100|k| − 5)], then the cal-
culated harmonic yields as well as the sharpness of the
harmonics would best agree with the data. This bell-
shaped function gives T2= 2fs at k=0. It drops quickly
to 1.5 fs at |k|=0.05 a.u. For larger |k| away from the Γ
point, it reduces to 1 fs quickly. Note that k-dependent
dephasing time T2(k) has been discussed and mentioned
in references [26–29].

FIG. 4. (a) The dependence of the calculated harmonics on
the dephasing time and the comparison with experimental
data. The colored lines on the top indicates the different
dephasing time and the color for the experimental data. (b)
Comparison of the strength of the harmonics vs the dephasing
time.

In conclusion, we have demonstrated that a one-
dimensional two-band SBEs model can nicely explain
the observed orientation-dependent high-order harmonic
spectra for ZnO reported in Refs. [1, 2]. Keys to the
success are the accurate band energies and the transi-
tion dipole between the two bands. We demonstrated
that correct phase of the transition dipole is essential to
explain the even harmonics. The phase appears to have
been overlooked in most of the previous theoretical treat-
ment of harmonics in solids. Our results is reminiscent
of HHG in gas-phase molecules where it was established
in the quantitative rescattering (QRS) theory [30, 31]
that accurate angle-dependent complex transition dipole
is essential for the correct description of harmonics in
molecules. The success of the two-band model in ZnO
would pave the way for extending the theory to more
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complex multiple-band models for other solids, but only
if the TDPs are correctly calculated.
Looking ahead, much remains to be done. It is imper-

ative to find an efficient computational method to calcu-
late the phase of the transition dipole that are not avail-
able in today’s commercial crystal structure packages.
Next, it is desirable to extend the 1D SBE calculation to
3D such that the polarization of the harmonics [14] can
also be explored. In addition, the dephasing time has
been introduced in the SBE method to bypass the need
of carrying out propagation of harmonics in the medium.
A critical test of this procedure may benefit from the
measurement of the phase of the harmonics.
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Pérez-Hernández, B. Szafran, M. F. Ciappina, F. Sols,
A. S. Landsman, and M. Lewenstein, Phys. Rev. X 7,
021017 (2017).

[22] T. T. Luu and H. J. Wörner, Phys. Rev. B 94, 115164
(2016)

[23] S. C. Jiang, H. Wei, J. G. Chen, C. Yu, R. F. Lu, and C.
D. Lin, Phys. Rev. A 96, 053850 (2017).

[24] The supplementary material can be found in (to be
filled).

[25] A. Kobayashi, O. F. Sankey, S. M. Volz, and J. D. Dow,
Phys. Rev. B 28, 935 (1983).

[26] T. Takagahara, Quantum Coherence, Correlation and
Decoherence in Semiconductor Nanostructures (Aca-
demic Press, UK, 2003), chap. 2.

[27] F. Langer et al., Nature 533, 7602 (2016).
[28] I. Floss et al., Phys. Rev. A. 97, 011401 (2018).
[29] C. R. McDonald, A. B. Taher, and T. Brabec, Journal of

Optics 19, 114005 (2017).
[30] T. Morishta, A.-T. Le, Z. Chen, and C. D. Lin, Phys.

Rev. Lett.100, 013903 (2008).
[31] A.-T. Le, R. Lucchese, S. Tonzani, T. Morishita and C.

D. Lin, Phys. Rev. A80 013401, (2009).


