
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Characterization of Topological States via Dual Multipartite
Entanglement

Yu-Ran Zhang, Yu Zeng, Heng Fan, J. Q. You, and Franco Nori
Phys. Rev. Lett. 120, 250501 — Published 18 June 2018

DOI: 10.1103/PhysRevLett.120.250501

http://dx.doi.org/10.1103/PhysRevLett.120.250501


Characterization of topological states via dual multipartite entanglement

Yu-Ran Zhang,1, 2 Yu Zeng,3 Heng Fan,3, 4, ∗ J. Q. You,5, 1, † and Franco Nori2, 6, ‡

1Beijing Computational Science Research Center, Beijing 100094, China
2Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan

3Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4CAS Central of Excellence for Topological Quantum Computation,

University of Chinese Academy of Sciences, Beijing 100190, China
5Department of Physics, Zhejiang University, Hangzhou 310027, China

6Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

We demonstrate that multipartite entanglement is able to characterize one-dimensional symmetry-protected

topological order, which is witnessed by the scaling behavior of the quantum Fisher information of the ground

state with respect to the spin operators defined in the dual lattice. We investigate an extended Kitaev chain with

a Z symmetry identified equivalently by winding numbers and paired Majorana zero modes at each end. The

topological phases with high winding numbers are detected by the scaling coefficient of the quantum Fisher

information density with respect to generators in different dual lattices. Containing richer properties and more

complex structures than bipartite entanglement, the dual multipartite entanglement of the topological state has

promising applications in robust quantum computation and quantum metrology, and can be generalized to iden-

tify topological order in the Kitaev honeycomb model.

Introduction.—In recent years, quantum topological phases

[1] in extended systems have become of great significance in

modern physics due to its promise for both topological quan-

tum computation [2–7] and condensed matter physics [8, 9].

Topological phase transitions, beyond the Landau symmetry-

breaking theory, are described by the change of its topo-

logical order or symmetry-protected topological (SPT) order

[1]. Topological order [10], e.g. quantum Hall states or spin

liquids [11], cannot be described by local order parameters

[12, 13] but can be characterized by the long-range entangle-

ment encoded in the states of the systems, such as the topo-

logical entanglement entropy [14, 15] and entanglement spec-

trum [16]. Further enriched by symmetries, SPT phases, cor-

responding to short-range entangled phases with symmetry-

protected edge modes [17–20], are theoretically proposed and

experimentally discovered in topological insulators and su-

perconductors [20–26]. These characteristics make topolog-

ical states robust against local noise, which has emerged as

one of the most exciting approaches to realizing topologically

protected quantum information processing and fault-tolerant

quantum computing [27]. The simplest realization would

be the Majorana zero modes (MZMs) at the edges of low-

dimensional systems [28–34], e.g., extended Kitaev models

[35–38], which have recently been observed in various ex-

perimental platforms including nanowire devices [39, 40] and

quantum spin liquids [41].

In addition to the fruitful results from bipartite entangle-

ment [14–16], multipartite entanglement [42–45] (witnessed

by the quantum Fisher information (QFI) [46–48] with respect

to nonlocal operators [49]) displays much richer properties of

complex structures of topological states and deserves further

investigation. The QFI quantifies useful multipartite entan-

glement for quantum metrology, which is confirmed by quan-

tum parameter estimation with sub-shot-noise sensitivity [45–

48, 50, 51]. Recently, it was shown that the scaling behavior of

the QFI with respect to spin operators in the original lattice is

sensitive for detecting the topologically nontrivial phases with

low winding numbers ν = ±1,± 1
2 [52]. However, we find

that topological phases with higher winding numbers cannot

be characterized by the QFI with respect to these operators.

In this Letter, we provide a general method to character-

ize 1D SPT order with higher winding numbers by multi-

partite entanglement defined in the dual lattice. We focus

on an extended Kitaev fermion chain with p-wave supercon-

ductivity and a chiral symmetry belonging to the Z-type BDI

class [53–55] identified equivalently by high winding num-

bers and boundary MZMs from the Bogoliubov-de Gennes

(BdG) Hamiltonian. Dual multipartite entanglement is sig-

naled by the scaling behavior of the QFI density of the ground

state with respect to spin operators by the duality transfor-

mation [56–59]. By exploiting the duality of the model, we

find that the QFI density in dual lattices, written in terms of

string correlation functions (SCFs) [59–61], has a linear scal-

ing behavior versus system size in SPT phases and detects 1D

quantum SPT phase transitions. Therefore, together with [52],

dual multipartite entanglement can be used to identify SPT or-

der. We also extend our investigation to the Kitaev honeycomb

model [62], indicating that our results can be generalized to

2D systems with topological order. Our work reveals the pos-

sibility of promising applications of topologically protected

multipartite entanglement in robust quantum computation and

quantum metrology.

Winding numbers, Majorana zero modes, and topological

phase transitions.—We study the extended Kitaev fermion

chain with extensive pairing and hopping terms [37],

H =

Nf
∑

n=1

L
∑

j=1

(

J+
n

2
c†jcj+n +

J−
n

2
c†jc

†
j+n + h.c.

)

−
L
∑

j=1

µ

(

c†jcj −
1

2

)

, (1)

where L (assumed even) is the total number of sites, Nf de-



2

notes the farthest pairing and hopping distance, and the an-

tiperiodic conditions cj+L = −cj are assumed. The hopping

and pairing parameters J±
n are all chosen as real numbers, to

make the Hamiltonian preserve time-reversal symmetry and

belong to the BDI class (Z type) characterized by a winding

number [53, 54]. Through the Jordan-Wigner transformation

c1 = −σ+
1 , cj = −σ+

j

∏j−1
i=1 σ

z
i , this spinless fermion model

corresponds to the extended Ising model [63–68]

H =

Nf
∑

n=1

L
∑

j=1

(

Jxn
2
σxj σ

x
j+n+

Jyn
2
σyj σ

y
j+n

)j+n−1
∏

l=j+1

σzl +

L
∑

j=1

µ

2
σzj ,

(2)

with Jx,y ≡ (J+
n ± J−

n )/2. In the thermodynamic limit

L ≫ Nf ≥ 1, the Hamiltonian (1) can be diagonalized by

a Fourier-Bogoliubov transformation with energy spectrum

ǫq = ± 1
2

√

y(q)2 + z(q)2, where y(q) =
∑Nf

n=1 J
−
n sin(nq),

z(q) =
∑Nf

n=1 J
+
n cos(nq)− µ, with q the wavevector [68].

As a Z topological invariant [53, 65], the winding num-

ber of the closed loop with the vector r(q) = (0, y(q), z(q))
in the auxiliary y-z plane around the origin can be written as

ν = (1/2π)
∮

(ydz−zdy)/|r|2. Substituting ζ(q) ≡ exp(iq),
for y(q) ≡ Y (ζ) and z(q) ≡ Z(ζ), we can define a com-

plex characteristic function g(ζ) ≡ Z(ζ) + iY (ζ) and obtain

the winding number by calculating the logarithmic residue of

g(ζ) in accordance with the Cauchy’s argument principle [69]

ν = (1/2πi)
∮

|ζ|=1
dζ g′(ζ)/g(ζ) = N − P , where in the com-

plex region |ζ| < 1, N is the number of zeros and P is the

number of poles. Moreover, topological phase transitions are

characterized by the change of winding numbers at the criti-

cal points that can be calculated by solving g(ζ) = 0 on the

contour |ζ| = 1 [68]. Similarly, the topologically nontrivial

phases for the model (1) are also identified by the existence of

paired boundary MZMs of which the properties are obtained

from the solution of the BdG Hamiltonian with open boundary

conditions [64, 70, 71]. This can also be transformed to calcu-

lating zeros of g(ζ) in |ζ| < 1, such that the number of MZMs

at each end of the open chain, defined as M0, equals the ab-

solute value of the winding number: M0 = |N − P| = |ν|.
Therefore, these two approaches [(i) by winding numbers

from the geometric topology in the 2D auxiliary space, and

(ii) by MZMs from BdG equations to characterize topological

phases] in the extended Kitaev chain in Eq. (1) are equivalent

[68] (see, e.g., Fig. 1).

Multipartite entanglement and QFI density.—Multipartite

entanglement [43, 44] plays a key role in quantum physics and

quantum metrology, and moreover, it is central to understand-

ing quantum many-body systems. QFI, similar as quantum

spin squeezing [72, 73], is a significant quantity in both large-

scale multipartite entanglement detection and high-precision

quantum metrology [45–48, 50, 51]. Given a generator O and

a mixed state ρ =
∑

i pi|i〉〈i|, with 〈i|j〉 = δij , the QFI of a

state ρ(t) = exp(−itO)ρ exp(itO) with respect to a param-

eter t is [46] FQ[O, ρ] =
∑

pi+pj 6=0
2(pi−pj)

2

pi+pj
|〈i|O|j〉|2. For

a pure state |ψ〉, the QFI can be simplified as FQ[O, |ψ〉] =
4(∆ψO)2, where the variance of the generator is (∆ψO)2 ≡

µ
O
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FIG. 1. (color online) (a) Energy spectrum for L = 200 sites, (b) tra-

jectory of the winding vector r(q) = (0, y(q), z(q)), (c-e) probabil-

ity distributions [blue (red) curve is for left (right) modes] of MZMs

for L = 60 sites given different values of a chemical potential µ for

the extended Kitaev chain with Nf = 3 and J±
1 = 1, J±

2 = 2,

J±
3 = 2. (c) The phase diagram characterized by the winding num-

ber. (d) For µ = 0, the winding number ν = 3 and we have three

pairs of non-degenerate MZMs exponentially localized at the domain

wall. (e) For µ = −2, ν = 2 and there are two pairs of MZMs. (f)

When µ = 1, ν = 1 which leads to one pair of MZMs.

〈O2〉ψ − 〈O〉2ψ . The QFI relates to dynamic susceptibilities

[74] that are routinely measured in laboratory experiments.

Furthermore, the scaling of the QFI with respect to nonlo-

cal operators [49] would be sensitive to topological quantum

phase transitions [52]. For critical systems with L sites, we

consider a QFI density with form fQ = FQ/L, and the viola-

tion of the inequality fQ ≤ κ signals (κ+1)-partite entangle-

ment (1 ≤ κ ≤ L− 1) [42].

To detect a topological phase of an extended Kitaev

chain with a winding number ν = ±1, the generators in

terms of spin operators in the x, y directions through the

Jordan-Wigner transformation are chosen as [52] Oν=±1 =
∑L

j=1 σ
x,y
j /2, and staggered operators as O

(st)
ν=±1 =

∑L

j=1(−)jσx,yj /2. Then, the QFI density for the ground

state |G〉 becomes fQ[Oν=±1, |G〉] = 1 +
∑L−1

r=1 Cν=±1(r)

and fQ[O
(st)
ν=±1, |G〉] = 1 +

∑L−1
r=1 (−)rCν=±1(r), where the

spin-spin correlation functions areCν=±1(r) ≡ 〈σx,yj σx,yj+r〉G ,

with 〈· · · 〉G the average of the ground state |G〉. A topolog-

ical phase with a low winding number can be characterized

by power-law diverging finite-size scaling of the QFI density,

fQ ∝ L, as discussed in [52].

Characterization of topological phases by multipartite en-

tanglement in the dual lattice.—Duality in physics provides

different but equivalent mathematical descriptions of a system

and provides an overall understanding of the same physical

phenomena from different angles [58]. For example, an Ising
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FIG. 2. (color online) Dual QFI density fQ[O
(st)
ν , |G〉] of the ground

state |G〉 versus L for the extended Kitaev chain with Nf = 3 and

nonzero parameters (J±
1 = 1, J±

2 = 2, J±
3 = 2) in different topo-

logical phases. (a) For µ = 6, the winding number ν = 0. (b) For

µ = 3, ν = 1, and the fitting nontrivial scaling topological index

λ
(st)
1 = 0.9965. (c) For µ = 0, ν = 3, and λ

(st)
3 = 1.0047. (d) For

µ = −2, ν = 2, and λ
(st)
2 = 0.9957.
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FIG. 3. (color online) Scaling topological index λν and λ
(st)
ν of the

dual QFI density fQ[Oν , |G〉] and fQ[O
(st)
ν , |G〉], respectively, versus

system size L up to 1200. The extended Kitaev chain in Eq. (1) has

the following nonzero parameters: (a) J±
1 = 1, J±

2 = 2, J±
3 = 2

(Nf = 3); (b) J±
1 = 0.1, J±

2 = 0.21, J±
3 = 0.44, J±

4 = 0.9,

J±
5 = 2 (Nf = 5); (c) J±

1 = 0.1, J±
2 = 0.21, J±

3 = −0.74,

J±
4 = 0.9 (Nf = 4); and (d) J±

2 = 2.4, J±
3 = ±2 (Nf = 3).

chain with an external field h has a self-dual symmetry, map-

ping between the ordered and disordered phases, expressed as

HIsing =
∑

j(σ
x
j σ

x
j+1+hσ

z
j ) = h

∑

j(s
x
j s
x
j+1+h

−1szj ), with

the duality transformation sxj =
∏

k≤j σ
z
k, szj = σxj σ

x
j+1, and

syj = −iszjs
x
j [75]. Here both σ and s satisfy the same algebra.

Furthermore, the nonlocal SCF [59–61], characterizing SPT

order by the Z2 × Z2 symmetry in the cluster Ising model [1]

with HamiltonianHcluster =
∑

j(σ
x
j−1σ

z
jσ

x
j+1 + hσzj ), can be

written as a local correlator (−)r〈syj s
y
j+r〉G in the dual lattice

of the Ising model [60, 61]. Through the Jordan-Wigner trans-

formation (also regarded as a duality transformation using a

bond-algebraic approach [76]), the self-duality properties of a

spin- 12 model can help to study topological phases and multi-

partite entanglement in the extended Kitaev chain (1).

To detect a SPT phase with a positive integer winding num-

ber ν = n ≥ 2, we consider the duality transformation of

an extended Ising model H =
∑

j(σ
x
j σ

x
j+n−1

∏n−2
l=1 σ

z
j+l +

hσzj ) = h
∑

j(ŝ
x
j ŝ
x
j+n−1

∏n−2
l=1 ŝ

z
j+l+h

−1ŝzj ), corresponding

to an extended Kitaev chain with ν = n−1. We can define the

dual operator τ
(ν=n)
j ≡ ŝyj = −iŝzj ŝ

x
j . For a negative winding

number, ν = −n, we consider another extended Ising model

by transforming x → y: H =
∑

j(σ
y
j σ

y
j+n−1

∏n−2
l=1 σ

z
j+l +

hσzj ) = h
∑

j(s̃
y
j s̃
y
j+n−1

∏n−2
l=1 s̃

z
j+l + h−1s̃zj ) and obtain the

dual spin operator τ
(ν=−n)
j ≡ s̃xj = is̃zj s̃

y
j . The expressions

of the dual spin operators τ
(ν)
j differ according to the parity of

the winding number ν [77]. Explicitly with p ≥ 1, we have

[68] for even winding numbers,

τ
(ν±2p)
j = −

(

j−1
∏

k=1

σzk

)(

p
∏

l=1

σy,xj+2l−2σ
x,y
j+2l−1

)

, (3)

and for odd winding numbers,

τ
(ν=±(2p+1))
j = σx,yj

(

p
∏

l=1

σy,xj+2l−1σ
x,y
j+2l

)

. (4)

The SCF [60, 61] equals the spin correlation function from

site j to (j + r) in the dual lattice:

Cν(r) ≡ 〈τ
(ν)
j τ

(ν)
j+r〉G =

〈

j+r−1
∏

l=j

(

σαl σ
α
l+|ν|

|ν|−1
∏

k=1

σzl+k

)

〉

G

,(5)

where α = x (or y) for a positive (or negative) ν. It is clearer

to write the SCF, in terms of Majorana fermion operators aj =

c†j + cj and bj = i(c†j − cj), as

Cν(r) =

〈

j+r
∏

l=j

(−iblal+ν)

〉

G

=

〈

j+r
∏

l=j

(1− 2d†l,νdl,ν)

〉

G

, (6)

where we define dl,ν = (bl + ial+ν)/2 and d†l,ν = (bl −
ial+ν)/2 as Dirac fermion operators [71]. Therefore, the SCF

can also be regarded as the ground-state average of Z type

Majorana parity [77], and in particular, ∆ν ≡ limr→∞ Cν(r)
and ∆(st)

ν ≡ limr→∞(−)rCν(r) are the string order parame-

ters [59, 61], capturing hidden SPT order.

The generators of the dual QFI density are defined in the

dual lattice as Oν =
∑M

j=1 τ
(ν)
j , and O

(st)
ν =

∑M

j=1(−)jτ
(ν)
j ,

with M ≡ L − |ν| + 1, where the choice of dual genera-

tors depends on the sign of the direct interaction between the

Majorana fermions at chain ends [68, 78]. The operator Oν

applies for the positive interaction, and the staggered operator

O
(st)
ν is for the negative one. Then, we obtain the dual QFI

density of the ground state for L≫ Nf ≥ 1 as fQ[Oν , |G〉] ≃



4

1+
∑M−1
r=1 Cν(r), and fQ[O

(st)
ν , |G〉] ≃ 1+

∑M−1
r=1 (−)rCν(r),

where we have used (τ
(ν)
j )2 = I, with I the identity. Us-

ing Wick’s theorem, the dual QFI density can be expressed in

terms of fermion correlators and may be measured in many-

body systems using experimentally mature techniques, such

as Bragg spectroscopy [79, 80] or neutron scattering [81].

The SCF has a similar scaling behavior in the topologi-

cally nontrivial phase with a higher winding number as the

spin correlator used in [52] (see, e.g., [68]). Thus, we find

that the dual QFI density as a function of L also follows an

asymptotic power law scaling in the thermodynamic limit as

fQ[Oν , |G〉] = 1+γνL
λν , and fQ[O

(st)
ν , |G〉] = 1+γ

(st)
ν Lλ

(st)
ν ,

where the scaling coefficients γ and λ depend on the choice

of the dual generators and the parameters of the Hamiltonian

(1). For a topological phase with a definite winding number

ν, we could find that λν or λ
(st)
ν is equal to 1 (FQ ∝ L2), and

the scaling coefficients λω and λ
(st)
ω for other integer winding

numbers, ω 6= ν, are approximately zero (see, e.g., Fig. 2).

Thus, the scaling topological index λν or λ
(st)
ν , relating di-

rectly to the SCF, characterizes the features of the topological

phase with a winding number ν of the extended Kitaev model.

In Fig. 3, we consider four different types of extended Ki-

taev chain models and plot the fitting scaling coefficients λν
or λ

(st)
ν of the QFI density versus system size L up to 1200,

and also versus the chemical potential µ, which clearly show

the topological phase diagrams. Therefore, we conclude that

by choosing the generators in different dual lattices, the scal-

ing behavior of the QFI density, a witness of multipartite en-

tanglement, can detect 1D SPT phase transitions. In the topo-

logically nontrivial phase with integer winding number, the

quadratic growth of the QFI can also be broadly applicable to

practical quantum metrology [45–48, 50, 51]. The scaling co-

efficients of the QFI density in phases with half-integer wind-

ing numbers or on the critical boundary between two topo-

logical phases would be complicated [52] and deserve further

investigations, of which more simulations and discussions are

given in [68].

Dual multipartite entanglement in the Kitaev honeycomb

model.—The Kitaev honeycomb model [62], on a hexag-

onal lattice with topological order at zero temperature,

has been widely investigated using a variety of quantum-

information methods [82–85]. The Hamiltonian is Hhc =
−
∑

α=x,y,zJα
∑

〈ij〉α
σαi σ

α
j , where 〈ij〉α denotes the near-

est neighbor bonds in the α-direction. We consider positive

bonds, Jx,y,z > 0, and focus on the Jx + Jy + Jz = 1 para-

metric plane. The phase diagram is shown in Fig. 4(a).

Here, through the two-leg spin ladder [57] of the Kitaev

honeycomb model, we find that the quantum phase with

hidden topological order can also be characterized by dual

multipartite entanglement. As shown in Fig. 4(b), we rela-

bel all the sites along a special path and rewrite the Hamil-

tonian with third-nearest-neighbor couplings [57]: H2l =
−
∑L

j=1(Jxσ
x
2j−1σ

x
2j + Jyσ

y
2jσ

y
2j+3 + Jzσ

z
2jσ

z
2j+1). With

the duality transformation šxj =
∏j

k=1 σ
x
k , šzj = σzjσ

z
j+1, and

x

J  = 1z

J  = 1yJ  = 1

Az

Ax Ay

Bx

(a) (b)
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FIG. 4. (color online) (a) The phase diagram of the Kitaev hon-

eycomb model on the Jx + Jy + Jz = 1 plane. In the region

Jx ≤ Jy + Jz , Jy ≤ Jz + Jx, and Jz ≤ Jx + Jy , there is a gapless

phase B with non-Abelian excitations, and in other regions, there

are three gapped phases Ax,y,z with Abelian anyon excitations. (b)

A single-chain representation of the two-leg spin ladder of the Kitaev

model. (c) The scaling topological index λ
(st)
x of the dual QFI density

fQ[O
(st)
x , |G〉] for different values of Jx,y,z versus system size 2L up

to 400.

šyj = −išzj š
x
j , we obtain an anisotropicXY spin chain with a

transverse field in the dual space

H2l = −
L
∑

j=1

(Jxš
x
2j š

x
2j+2+ JyWj š

y
2j š

y
2j+2+ Jz š

z
2j), (7)

whereWj ≡ šx2j−1š
z
2j+1š

x
2j+3 is the plaquette operator in the

dual lattice (a good quantum number [57]) and has Wj = −1
(π-flux phase [86]) for the ground state. Then, with respect to

the dual generator O
(st)
x =

∑L

j=1(−)j šx2j , the QFI density is

fQ[O
(st)
x , |G〉] ≡ 1+

∑L−1
r=1 (−)rCx(r) ≃ 1+γ

(st)
x Lλ

(st)
x , where

the staggered SCF is (−)rCx(r) ≡ (−)r〈šx2j š
x
2j+2r〉G =

(−)r〈
∏2r
k=1σ

x
2j+k〉G . The dual QFI density is linear versus

L in the gapped phase Ax (Jx ≥ Jy + Jz) and constant in

other regions [see Fig. 4(c)]. The other two gapped phases

Ay andAz [see Fig. 4(a)] can be obtained by the substitutions

Jx → Jy,z → Jz,y → Jx, respectively. Moreover, when con-

sidering the equivalent brick-wall lattice [57] of the Kitaev

honeycomb model, these results can also be extended to the

general 2D lattice by transforming the second index of site to

the momentum space [57, 68].

Conclusions.—Recent work [52] shows that 1D SPT or-

der with winding numbers ν = ±1 can be characterized

by a super-extensive QFI with respect to the spin operator,

FQ ∝ L2. By introducing the above duality, we have shown

that 1D SPT order with higher winding numbers can be char-

acterized by the scaling behavior of multipartite entanglement

with respect to the spin generators in the dual lattice. By

choosing the generators in different dual lattices, the scaling

coefficients λν and λ
(st)
ν of the dual QFI density, as a wit-

ness of multipartite entanglement [43, 44], effectively iden-

tify different nontrivial topological phases with high winding

numbers. Moreover, further investigations on the Kitaev hon-

eycomb model have shown that our results for detecting 1D

SPT order could be well generalized to characterize topolog-

ical order in 2D systems (e.g., the toric code model [62] and
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fractional quantum Hall states [87]) and SPT order in non-

Hermitian systems [88]. This work paves the way to charac-

terizing topological phases using multipartite entanglement of

the ground state, and also the detection of topologically pro-

tected multipartite entanglement, with promising applications

in both quantum computation and quantum metrology.
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