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Cluster morphology of spherical particles interacting with a short-range attraction has been extensively stud-
ied due to its relevance to many applications, such as the large-scale structure in amorphous materials, phase
separation, protein aggregation and organelle formation in cells. Although it was widely accepted that the range
of the attraction solely controls the fractal dimension of clusters, recent experimental results challenged this
concept by also showing the importance of the strength of attraction. Using Monte Carlo simulations, we con-
clusively demonstrate that it is possible to reduce the dependence of the cluster morphology to a single variable,
namely, the reduced second virial coefficient, B∗

2 , linking the local properties of colloidal systems to the ex-
tended law of corresponding states. Furthermore, the cluster size distribution exhibits two well-defined regimes:
one identified for small clusters, whose fractal dimension, df , does not depend on the details of the attraction,
i.e., small clusters have the same df , and another related to large clusters, whose morphology depends exclu-
sively on B∗

2 , i.e., df of large aggregates follows a master curve, which is only a function of B∗
2 . This physical

escenario is confirmed with the re-analysis of experimental results on colloidal-polymer mixtures.

Colloidal dispersions are ubiquitous in nature and exhibit
rich equilibrium phases, such as liquid and crystal states [1, 2],
and non-equilibrium states, for example, gels and glasses
[2, 3]. They are also critical to several industrial applications
(paints, pharmaceutical drugs, etc.) [4–6]. Nowadays, the un-
derstanding of colloidal cluster formation has attracted much
recent interest due to its relevance to many applications, such
as colloidal stability, pharmaceutical protein formulations and
protein aggregations in some diseases [7, 8]. More explicitly,
cluster formation is associated to problems during the sub-
cutaneous injection of some cancer treatment drugs [7] and
the uncontrolled formation of protein aggregates is responsi-
ble for the development of some diseases [9, 10]. Clustering is
also important for the formation of organelles and other kind
of intracellular bodies, which occurs as result of the protein
phase separation at the interior of the cell [11–14].

Cluster formation has been studied in several colloidal sys-
tems with different types of interaction potentials, see Ref.
[15, 16] and references therein. Experiments show that col-
loidal clusters can be characterized as fractal structures [3, 17–
19], i.e., the size of a cluster composed of s particles grows
as Rg ∼ s1/df , where df is the fractal dimension. Spheri-
cal colloids with a short-range attraction hard-sphere (SAHS)
interaction constitute the most widely studied model system.
Experiments using colloid-polymer mixtures showed that the
range of attraction among colloids determines df of clusters
in the vicinity of the gel transition [17]. Long ranges (15% of
the particle diameter, σ) lead to compact clusters (df ∼ 2.5),
while small ranges (2% of σ) produce open and branched
structures (df ∼ 1.75). Since then, it has been well accepted
that the attraction range plays a determinant role for the clus-
ter morphology [15, 20–22]. However, Ohtsuka et al. [19]
found that the attraction strength modifies df and it takes an

almost constant value at the gel state, df ∼ 2.1. Thus, despite
the scientific and technological importance of the cluster mor-
phology, there is no clear understanding and consensus of the
control parameters that determine df in SAHS systems.

In this Letter, we have performed Monte Carlo (MC) simu-
lations to study the reversible cluster formation and morphol-
ogy in SAHS systems, and carefully re-examined independent
experiments. Combining both simulation and experimental
results, we conclusively demonstrate that, contrary to the cur-
rent widely accepted view [17], the dependence of the cluster
morphology in SAHS systems is solely dependent on the re-
duced second virial coefficient, B∗

2 . Furthermore, our simula-
tions indicate that the cluster size distribution is well separated
into two regimes: one for small clusters, whose morphology,
i.e., df , is almost independent of B∗

2 , and another related to
large clusters, where df depends exclusively and sensitively
on B∗

2 . After re-analyzing the experimental results, we con-
firm this scenario. Thus, our findings indicate that the col-
loidal cluster morphology at equilibrium conditions can be
linked to the extended law of corresponding states (ELCS)
[23] for SAHS systems (attraction range less than the 25% of
σ). Our result is thus an important extension of the applica-
bility of the ELCS, i.e., not only the macroscopic properties
are the same with the appropriate scaling, but also the local
morphology.

MC simulations are carried out in the canonical ensemble
using a similar protocol as the one presented in Ref. [24],
which is complemented with the parallel tempering technique
to make a smart exploration of the phase space. The colloidal
system consists of N = 4000 spherical particles interacting
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through a square-well (SW) potential [24],

uSW (r) =

 ∞ r < σ,
−ε σ ≤ r ≤ λσ,
0 r > λσ,

(1)

where λ and ε are the range and strength of the well, re-
spectively. We focus on short-ranged attractions, namely,
λ = 1.02, 1.05, 1.10, 1.15, which represent the effective inter-
action of colloids and proteins [24]. The particle number den-
sity, ρ = N/V , is linked to the packing fraction φ = π

6 ρσ
3.

The reduced second virial coefficient, B∗
2(T ), of the SW po-

tential is given by B∗
2(T ) =

[
1 + (1− eε/kBT )(λ3 − 1)

]
[24], where kB is the Boltzmann’s constant and T the absolute
temperature. Two particles are connected if their relative sep-
aration is smaller than λσ. All connected particles are identi-
fied and sorted into clusters of size s characterized by a radius

of gyration, Rg(s) =
[
1
s

∑s
i=1 (ri − rCM)

2
]1/2

, where ri is
the position of every particle in a cluster and rCM is the cluster
center of mass. The cluster fractal dimension is obtained by
fitting the Rg to the expression: Rg ∝ s1/df . Note that even
thoughRg of a real object should also include the contribution
of the mass distribution of individual particles, the current way
of calculating it assumes that all the mass is at the center of
a particle to compare our results with available experimental
and theoretical data [17, 19, 25]. However, a deeper discus-
sion on the effect of the mass distribution in the determination
of Rg can be explicitly found in the Supplementary Material
at [URL will be inserted by publisher].

The phase diagram of SAHS systems (λ ≤ 1.25) has been
reported by several authors, see, e.g., Ref. [24]. The phase
diagram of the SW fluid for λ = 1.1 is displayed in Fig. 1a.
Three thermodynamic regions can be distinguished: the fluid
state, the fluid-crystal coexistence and the (metastable) gas-
liquid coexistence [24], whose boundary is known as the bin-
odal line. The cluster morphology is studied along a isochoric
line crossing the phase boundaries, as indicated in Fig. 1a. We
have also included a state point slightly below the binodal just
to capture the trend of the cluster formation when crossing the
phase boundary although thermodynamic equilibrium cannot
be reached within the simulation time window. The density is
chosen below the percolation line to avoid clusters spanning
through the entire simulation box.
Rg as a function of the cluster size, s, is displayed in Figs.

1b and 1c. Note that if the morphology follows one fractal
structure, Rg vs. s should be described by one single straight
line in a log-log plot. However, the results in Figs. 1b and 1c
clearly indicate that small clusters and large clusters have dif-
ferent slopes. Therefore, even though it has been a common
method to analyze the experimental data with only one frac-
tal dimension for clusters with all sizes, our results indicate
that to better understand the changes in the cluster morphol-
ogy, it is appropriate to separate small clusters from large clus-
ters as it is likely that they may have different dependence on
the inter-particle potential parameters. To empirically set up a
boundary, we have used two straight lines (two different types

FIG. 1. a) Phase diagram, B∗
2 vs φ, for colloids interacting through

a SW potential with λ = 1.1. Solid line represents the fluid-crystal
coexistence boundary obtained from Eq. (4) of Ref. [26], diamonds
describe the binodal curve calculated with MC simulations [24] and
the star is the critical point, inverted triangles indicate the percolation
boundary [27]; the line is a guide for the eye. Vertical dotted line
indicates the packing fraction (isochoric line) at which the cluster
morphology is studied; the open triangle indicates a thermodynamic
state below the binodal. Radius of gyration, Rg , for clusters made of
s particles for SW systems at φ = 0.08 with b) λ = 1.1 at different
B∗

2 values (symbols in a)) and c) with variable λ and B∗
2 = −1.5.

Discontinuous lines fit the data to the expression Rg = As1/df ; the
fits are performed in the intervals s < 10 and 10 ≤ s ≤ 100. Vertical
arrows indicate the crossover point, located at s = 10, of both fits,
which naturally establishes the separation between small and large
clusters.

of fractal morphologies) to fit the curveRg vs. s in the log-log
representation. Interestingly, we find that the fits suggest that
there is a crossover point for Rg at s ∼ 10 (see the intersec-
tion of the fits indicated by the vertical arrows in Figs. 1b and
1c), which allow us to make a distinction between ”small” and
”large” clusters from now on. Hence, we refer small clusters
for those clusters composed of s ≤ 10 and large clusters with
10 < s ≤ 100. Note that assigning a fractal dimension to
small clusters (s ≤ 10) may not be very meaningful. How-
ever, for the sake of consistency and easier comparison with
earlier contributions, we still extract a nominal fractal dimen-
sion using the slope of Rg for small aggregates.

Fig. 1b shows the Rg in colloidal systems at different val-
ues of B∗

2 for λ = 1.1. The value of B∗
2 ranges from 0.075

(close to the Boyle point; B∗
2 = 0) to -1.723, which is inside

the binodal. Note that df of small clusters is not sensitive to
B∗

2 , i.e., small aggregates exhibit the same fractal dimension,
df ∼ 1.65, however, large clusters depend on B∗

2 . Particu-
larly, close to the Boyle point, where entropic and energetic
effects might contribute equally to the cluster morphology,
df ∼ 1.90. While around the fluid-crystal coexistence and
the gas-liquid phase separation, df takes the values df ∼ 2.00
and df ∼ 2.23, respectively. The latter values of df are cal-
culated based on our criteria to distinguishing between small
and large clusters.

To understand the effect of the attraction range, Fig. 1c
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shows the behavior of Rg as a function of λ with a constant
value of B∗

2 = −1.5 (near the gas-liquid transition). Our re-
sults again indicate that Rg for small clusters does not change
much with λ. Interestingly, different from the case of chang-
ing B∗

2 , altering the range of attraction only slightly changes
df of large clusters, which indicate that the cluster morphol-
ogy does not change dramatically with λ if B∗

2 is constant.
df takes values between 2.2 and 2.3 for B∗

2 = −1.5 when λ
changes from 1.02 to 1.15. The tests for other cases (different
volume fractions and attraction ranges) all point out that the
morphology of large clusters for the size range, 10 ≤ s ≤ 100,
is almost the same, provided they have the same value of B∗

2 .
Our observations seem to contradict the conclusions of ear-

lier experimental results [17]. We revisit some experimental
results on the cluster morphology in colloid-polymer mixtures
in which the attraction range is given by ξ, i.e., the size ratio
between the colloids and the polymer chains, while the at-
traction strength is controlled by the polymer concentration,
cp. Fig. 2a shows the experimental phase diagram for differ-
ent experimental colloid-polymer systems [2, 17, 19, 28–32],
where the attraction range is similar to the one discussed here.

Comparing the MC results to experiments is not straight-
forward because B∗

2 for the latter cannot be easily measured.
At low polymer concentrations, cp/c∗p . 0.10, all colloidal
systems are in the fluid state. When cp/c∗p & 0.15, the sys-
tem starts reaching one of the following states: fluid-crystal
coexistence, gas-liquid separation and gelation; this is a com-
mon behavior for different systems with short-ranged attrac-
tions, even at higher colloidal concentrations [33], and coin-
cides with the reported with simulations (Fig. 1a). The gas-
liquid coexistence [34] and the gelation line [35] for colloids
interacting through an Asakura-Oosawa [36] potential with
ξ = 0.1 are also displayed. Based on Fig. 2a and from the
fact that the overlap concentration, c∗p ∼ 1/R3, depends on
the polymer length R, it is reasonable to believe that cp/c∗p
includes both effects, namely, the strength (cp) and range (R)
of the attraction between colloids, thus playing an analogous
role as B∗

2 . One could assume that, in the same spirit as
in the ELCS, two short-ranged attractive systems with equal
cp/c

∗
p and φ possess similar thermodynamic properties and

are, therefore, somehow equivalent. Thus, we take advantage
of this fact to assess our simulation results for the cluster mor-
phology with those clusters experimentally observed close to
the phase separation and around the boundary of gelation. To
establish such comparison, one should notice that ξ ∼ λ− 1.

Fig. 2b shows the experimental results for ξ = 0.11 and
two different values of cp/c∗p taken from Refs. [17, 19]. We
also include the fit for small clusters obtained in Fig. 1b and
for large clusters we plot the Rg consistent with the values re-
ported in Ref. [19]. The physical scenario displayed in Fig. 1b
is nicely confirmed. In the fluid state, cp ∼ 0.057c∗p (see Fig.
2a), large clusters exhibit a df ∼ 2.01, while in the vicinity of
the gel-like state, cp ∼ 0.229c∗p, df is about 2.14.

Furthermore, the trend for large clusters discussed in Fig.
1c is also confirmed in the experiments at similar cp (see Fig.
2c), but different attraction range; ξ = 0.11 from Ref. [19]

FIG. 2. a) Phase diagram of colloid-polymer mixtures for small at-
traction ranges, ξ = 2R/σ, with R being the polymer radius of gy-
ration. cp and c∗p are the polymer and overlap concentrations, respec-
tively. Note that the scale has been inverted to directly compare with
Fig. 1. Empty symbols represent a fluid phase, solid symbols the
phase separation or gel states and half solid-empty symbols are the
fluid-crystal coexistence. Data correspond to the following experi-
mental systems: ξ = 0.08 (.) [28], ξ = 0.11 (/)[19], ξ = 0.09
(4)[29], ξ = 0.078 (D)[30], ξ = 0.026 (O) [31], ξ = 0.08 (2)[2]
and ξ = 0.02, 0.04, 0.15 (7)[17] and ξ = 0.09 (�)[32]. Colored
regions correspond to the gas-liquid separation from Ref. [34] and
gelation from Ref. [35] for an Asakura-Oosawa system with ξ = 0.1.
Radius of gyration, Rg , for clusters made of s particles for experi-
mental systems at b) different cp/c∗p and same ξ taken from Ref [19]
and c) similar cp/c∗p and different ξ taken from Refs. [19] (/) and
[17] (7). Dashed lines correspond to Rg ∝ s1/1.65; the fit for small
clusters in simulations. For large clusters, we plot the correspond-
ing Rg consistent with the df reported in Ref. [19] and the colored
region in c) denotes the relation Rg ∝ s1/2.0.

and ξ = 0.02 from Ref. [17], i.e., df does not change appre-
ciably with ξ for small clusters and for large clusters df is the
same in both systems provided they have similar cp/c∗p. Figs.
2b and 2c also confirm the crossover point at s = 10.

We now look in more detail the morphology of small and
large clusters obtained from MC simulations. The morphol-
ogy of small clusters (Fig. 3a) becomes slightly more com-
pact by decreasing B∗

2 . At large B∗
2 , df = 1.64, whereas

for a small B∗
2 , df = 1.84, representing a small increase of

12%. Hence, despite the large difference between the ther-
modynamic states (from a B∗

2 around the fluid-solid coexis-
tence to one around the metastable gas-liquid phase separa-
tion), small clusters display practically similar morphology.
The branch-like morphology of small clusters is associated to
the entropy favoring non-compact cluster, regardless the at-
traction strength between particles. df of small clusters in the
ground state (T = 0) is more compact [37–39].

Different from that of small clusters, above the coexistence
region, large clusters (Fig. 3b) become more compact as
the attraction strength increases towards the phase separation
boundary (see Fig. 1a). The morphology of large clusters
predicted by the simulations can be classified as a kind of in-
termediate structure with 2 < df < 3.
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FIG. 3. Radius of gyration, Rg , for a) small and b) large clusters
made of s particles interacting with a SW potential for several values
of B∗

2 at the same φ = 0.08 and λ = 1.1. In a) the Rg for clusters in
the ground state from Ref. [38] is also shown. c) Fractal dimension
for small and large clusters as a function of (1 − B∗

2 ) for the SW
fluid of variable range, λ, at φ = 0.08; dashed line is a guide for the
eye. Colored regions represent the boundary of the gas-liquid and
the fluid-crystal phase coexistence displayed in Fig. 1a.

The MC results are summarized in Fig. 3c, which shows df
as a function ofB∗

2 for small and large clusters at φ = 0.08 for
different attraction ranges. As shown in the figure, for small
clusters, df slightly increases withB∗

2 and essentially takes an
almost constant value of df ∼ 1.68. For large clusters, df in-
creases from 1.9 to 2.5 when the system goes from a fluid state
to the coexistence region, passing through the fluid-crystal co-
existence. In the fluid phase, where the effects of the attraction
are barely noticeable, large clusters are seldomly observed
and the df shows a large error bar. In such thermodynamic
state, df is similar to the one observed in the diffusion-limited
cluster aggregation (DLCA) process [40]. Inside the fluid-
crystal region, where the potential energy becomes relevant,
the cluster topology depends on the attraction strength. Inter-
estingly, near the phase separation, clusters have a structure
similar to those driven by the reaction-limited cluster aggre-
gation (RLCA) mechanism [41]. The simulation results are
very robust, in the sense that a similar trend is observed at
different densities; df has a small dependence on the density
(data not shown), provided it is below the percolation density
(see Fig. 1a).

Our observations are further supported by experimental re-
sults even though we need to reanalyze the reported data.
First, for small clusters, Fig. 4a displays the Rg for small
clusters in a colloid-polymer mixture taken from Refs. [17]
and [19]. Additionally, the fits shown in Fig. 3a are also il-
lustrated. Despite the dispersion in the experimental data, the

FIG. 4. Radius of gyration, Rg , for a) small and b) large clusters
made of s particles in a colloid-polymer mixture, data taken from
Refs. [19] (solid symbols) and [17] (empty symbols). Panel a) shows
the fit obtained from panel Fig. 3a). In panel b), solid lines corre-
spond to df reported in Ref. [19]. c) Fractal dimension of clusters
with less than 100 particles taken from Refs. [17] (7) and [19] (/) as
function of cp/c∗p. � indicate the df of small clusters from Ref. [19]
and ∗ is the fit for s ≤ 100 for the data in Ref. [17]. Colored region
represents the boundary of the gas-liquid phase separation estimated
from Fig. 2a and lines are guides for the eye.

small clusters follow the same trend as in the MC simulations.
This corroborates that the cluster morphology of small clus-
ters is indeed not sensitive to the interaction potential.

Secondly, the trend for large clusters (see Fig. 3b) is con-
firmed by experimental measurements (again despite the ex-
perimental dispersion) performed at different thermodynamic
states (see Fig. 4b). Lu et al. showed that in colloid-polymer
mixtures close to gelation, the cluster morphology strongly
depends on the attraction range [17]. Taking the experimen-
tal data from Ref. [17], we have calculated df of clusters
to compare with the MC simulations for the cluster size up
to s ∼ 100. We note that due the limited number of points
from the experimental results, the error bars are relatively
large. Fig. 4c displays the experimental df along with data
from Ref. [19]. Interestingly, the experimental data follows a
trend similar as the one depicted in Fig. 3c; for weak attrac-
tions df ∼ 1.8, but this value increases systematically with
the polymer concentration, i.e., attraction between colloids
increases, until the colloidal dispersion reaches the gelation
boundary with df ∼ 2.2. At this point, the structure does not
evolve any more as the system enters to the region of arrested
states. Data from Ref. [17] has larger error bars, but follows
the same trend. Therefore, the assessment of the MC results
with available experimental data demonstrates that the inter-
play of the range and strength of the attraction, condensed into
the B∗

2 , determines the compactness and the fractal structure
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of equilibrium clusters in colloid-polymer mixtures.
Using Monte Carlo simulations together with the re-

analysis of experimental data, we illustrated that at equilib-
rium conditions, the cluster morphology should be understood
with two different size ranges. For small clusters (s ≤ 10),
their morphology is only slightly affected by the thermo-
dynamic state. However, the morphology of large clusters,
10 < s ≤ 100, sensitively depends on the interaction, and
is solely determined by B∗

2 . Our findings show that systems
with larger B∗

2 have large clusters with open structures, while
close to the phase separation with smaller B∗

2 , large clusters
are more compact. The re-analysis of the previously reported
experimental data exhibited a similar trend: the fractal dimen-
sion of clusters formed at weak attractions are more branched,
df ∼ 1.8 (DLCA-like), while close to the gel transitions they
are more compact with df ∼ 2.2 (RLCA-like). Thus, we have
conclusively unraveled the important role of B∗

2 on the struc-
ture of the clusters at equilibrium conditions and demonstrated
the close relationship between the cluster morphology and the
extended law of corresponding states in SAHS systems.
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