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Active stresses can cause instabilities in contractile gels and living tissues. Here we provide
a generic hydrodynamic theory that treats these systems as a mixture of two phases of varying
activity and different mechanical properties. We find that differential activity between the phases
causes a uniform mixture to undergo a demixing instability. We follow the nonlinear evolution of the
instability and characterize a phase diagram of the resulting patterns. Our study complements other
instability mechanisms in mixtures driven by differential adhesion, differential diffusion, differential
growth, and differential motion.
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Biological systems are distinguished by the presence
of active stresses which affect their properties and alter
their stability. For example, active stresses give rise to
collectively moving streaks [1] and clusters [2–4], rotating
ring, swirl or aster-like patterns [5–9, 53], or the remod-
elling of cell-to-cell junctions in living tissues [11]. These
systems are typically described as a single phase with ac-
tive stresses that drive the assembly of the constituents
and the properties of the phases are typically assumed as
liquid-like [12–14] or even gas-like [15–18].

However many active materials cannot be treated as
fluids. Examples include cartilage, bone, tissues in early
development, and superprecipitated systems such as net-
works of filaments connected by crosslinks and molecu-
lar motors. The presence of activity in these systems
drives the macroscopic contraction of gels [9, 19, 53], the
compaction of cells during the condensation of cartilage
cells [20], the network formation of osteoblasts during
skull closure in embryos [21], the formation of furrows
and tubes in tissues [22, 23] and causes cellular motil-
ity [24, 25]. All these systems are composed of multi-
ple phases with different rheological properties and sub-
ject to multiple types of active forcing. This differen-
tial activity can cause instabilities in a variety of sys-
tems such as chromosome positioning [26], demixing in
polydisperse colloidal mixtures [27, 28], and in polyther-
mal mixtures [29]. Thus, we need to go beyond one-
component descriptions used to describe isotropic active
gels [12, 23–25] and include a more general biphasic de-
scription [30, 31]. While recent work has included ac-
tivity in a poroelastic description [32, 33], the material
was assumed to be homogeneous and stable despite ac-
tive stress generation in one of the phases. Here we re-
lax this assumption of the stability of an active mixture
composed of two phases with different activity and dif-
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ferent mechanical properties, and ask under what physi-
cal conditions an active poroelastic material might con-
tract/condense or disintegrate/fragment.

We start with a consideration of isotropic active sys-
tems composed of two immiscible phases, i = 1, 2. These
systems can be described by a hydrodynamic theory
similar to descriptions used for fluid-like biphasic mat-
ter [34, 35], or elastic [36] and viscoelastic gels [37, 38].
This theory is valid on length scales above the char-
acteristic pore size of the solid-like phase (Fig. ??(c)).
At the simplest level, activity in our biphasic system
is described as an isotropic active stress that acts on
each phase which responds to this stress according to
its passive mechanical properties which are either fluid
or solid-like, respectively. Each phase (i) is described by

the hydrodynamic variables of velocity v
(i)
α , volume frac-

tion φ(i) and displacement u
(i)
α with ∂tu

(i)
α = v

(i)
α . The

overall system is assumed to be incompressible and fully
occupied by the two phases, i.e. φ ≡ φ(1) = 1 − φ(2).
The fractions of each phase i are conserved, so that

∂tφ
(i) = −∂α(φ(i)v

(i)
α + j

(i)
α ), where j

(i)
α denotes a rela-

tive flux between the phases with j
(1)
α = −j(2)α =: jα.

This relative flux can for example stem from rare un-
binding events of components that belong to one of the
phases. The resulting unbound components can diffuse
and thereby cause an effective diffusive flux of the bound
components (see Supplemental Material [39], I). For sim-
plicity, we write jα = −D∂αφ, where D denotes the
diffusion constant. The two conservation laws can be
equivalently expressed by one transport equation and an
incompressibility condition,

∂tφ = −∂α
(
φv(1)α

)
+D∂2αφ , (1a)

0 = ∂α

[
φ v(1)α + (1− φ) v(2)α

]
. (1b)

Neglecting osmotic effects and inertia, force balance in
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each phase implies:

0 = ∂β

(
φσ

(1)
αβ

)
− φ∂αp−Fα , (2a)

0 = ∂β

(
(1− φ)σ

(2)
αβ

)
− (1− φ)∂αp+ Fα , (2b)

where σ
(i)
αβ is the additional stress (beyond the pressure)

in each phase, and we have assumed, as in mixture the-
ory [40–42] that this stress is weighted by the respective
volume fraction [43]. The pressure p acts as a Lagrange
multiplier that ensures the incompressibility condition
Eq. (1b). Momentum transfer between the phases is de-
scribed by a friction force density F . To leading order
F is proportional to the relative velocity of the phases,
Fα = Γ(φ)(v

(1)
α − v(2)α ), where Γ(φ) = Γ0φ(1 − φ) is the

friction coefficient between the phases with Γ0 constant.
The dependence of the friction coefficient on volume frac-
tion is a consequence of the condition that hydrodynamic
momentum transfer vanishes if one of the phases is ab-
sent, i.e. F = 0 for φ = 0 or φ = 1. Finally, we additively
decompose the stress into the passive stress σ

(i),p
αβ and the

isotropic activity A(i),

σ
(i)
αβ = σ

(i),p
αβ +A(i) δαβ , (2c)

where the passive stress σ
(i),p
αβ characterizes the mechan-

ical properties of each phase. In general, the activity
depends on all hydrodynamic variables. For simplicity,
we focus on activities that depend on the volume fraction
φ, A(i) = A(i)(φ). Eqs. (2) can be rewritten as

0 = ∂β

(
φσ

(1)
αβ + (1− φ)σ

(2)
αβ − δαβp

)
, (3a)

0 = ∂β

(
φσ

(1),p
αβ

)
− φ

1− φ∂β
(

(1− φ)σ
(2),p
αβ

)
+
(
v(2)α − v(1)α

)
Γ0φ+ φA(φ)∂αφ , (3b)

where we define

A(φ) =

[
A(1)

φ
+

A(2)

1− φ +
d

dφ

(
A(1) −A(2)

)]
(3c)

as the differential activity. The derivatives of the activity
A(i) with respect to φ appear because gradients of stress
enter the force balance Eqs. (2a) and (2b), while the de-
pendencies on the activity A(i) are a consequence of treat-
ing the system as a biphasic mixture, i.e. weighting the
stress contributions by the respective volume fractions;
see Supplemental Material [39], III for more details on
Eq. (3c). The specific form of the activities A(i) depends
on the system of interest.

To complete our description we have to select con-
stitutive equations for the passive stress of each phase.
Depending on the type of multiphasic system such as
physical or chemical gels, tissue mixtures or mixtures
composed of active colloids, we may consider solid, fluid
or visco-elastic stress-strain or stress-strain-rate relation-
ships. However, to illustrate the generic but multi-phase

specific dynamic properties, we restrict ourselves to a
simple example of a one dimensional, biphasic mixture
composed of a (Kelvin) viscoelastic solid, (s), and a fluid
phase, (f), with the constitutive equations:

σs,p = λ∂xu+ ζ∂xv , (4a)

σf,p = 0 , (4b)

where the one dimensional solid displacement and veloc-
ity are u and v = du/dt ≡ u̇; the fluid velocity is given
by −vφ/ (1− φ). In Eq. (4a), λ denotes the Lamé co-
efficient and ζ is the bulk solid viscosity. The viscous
stress in the fluid phase can be approximated to zero
since fluid strains are negligible relative to solid strains
on length scales above the pore size, and in the systems of
interest, the solid viscosity typically exceeds the fluid vis-
cosity by several orders in magnitude [44]. Moreover, an
additional fluid viscosity does not affect the occurrence of
an instability. Since diffusive transport of constituents in
this solid-fluid mixture is expected to be slow compared
to solid momentum transport, we consider the limit of
small diffusivities and use rescalings of length and time
scales not containing the diffusion constant. Specifically,
we rescale time and length as t → (ζ/λ) t and x → ` x

with ` =
√
ζ/Γ0, so that velocities v → v `λ/ζ and the

scaled equations read:

∂tφ = −∂x(φu̇) + D̃∂2xφ , (5a)

0 = ∂x (φ∂xu+ φ∂xv) + φÃ(φ) ∂xφ−
φ

1− φu̇ . (5b)

There are two dimensionless parameters in Eqs. (5), mea-

suring the strength of differential activity, Ã = A/λ and

diffusivity, D̃ = DΓ0/λ.
To understand the stability of a homogenous base state

given by u = u0, u̇ = 0 and φ = φ0, we perturb the
volume fraction of the phases and the displacement and
expand the perturbation in terms of Fourier modes of
the form ∝ eωt+iqx and linearize the equations above.
Calculating the largest growing mode to linear order in
diffusivity D̃ and to the fourth order in the wavenumber
q gives

<(ω+) ' q2

B

[
−1 + Ãφ0

(
1− D̃ B

Ãφ0 − 1

)]
(6)

− q4

B2

(
Ãφ0 − 1

)
,

for φ0 ∈ [0, 1] and Ãφ0 > 1, and where B = 1/(1 − φ0).
We see that there is a long wave length instability with
<[ω+(q)] > 0 leading to growth of the homogeneous state

on length scales & `/
√
B (see Supplemental Material [39],

II). The instability is driven by differential activity A
which competes with frictional momentum transfer be-
tween the phases, and diffusion of displacement, veloc-
ity and volume fraction. At the onset of the instabil-
ity where spatial inhomogeneities in strain are negligible,
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FIG. 1. (a,b) Stability diagrams as a function of volume fraction φ and non-dimensional constant differential activity Ã

obtained from the linear stability analysis of Eqs. (3), for different choices of diffusivity (a) D̃ = 0 and (b) D̃ = 0.1. The
colored regions depict <(ω+) > 0. Red indicates an instability where =(ωk) = 0, corresponding to exponential growth, while
for dark (light) blue corresponds to =(ωk) 6= 0 for all wave numbers (for a finite band of wavenumbers). (c) Illustration of the
instability mechanism driven by differential activity A(φ). Small perturbations in volume fraction, φ0 → φ0 + δφ, are amplified
since differential activity causes a drift velocity v = u̇ that points toward the maximum of a local inhomogeneity of volume
fraction. To lowest order in q, this velocity (red horizontal arrows) scales as v ∝ A(φ)∂xφ (Eq. (5b)), further increasing the
initial perturbation as indicated by vertical black lines.

long wavelength perturbations in volume fraction are am-
plified because differential activity causes a solid drift
velocity u̇ that points toward the maximum of a local
inhomogeneity of volume fraction (Fig. 1(c)). This drift

scales as u̇ ∝ Ã∂xφ to lowest order in q (Eq. (5b). If
A > 0, the velocity is parallel to the gradient in solid
fraction and thus leads a local increase in the solid vol-
ume fraction, while it is zero at the local maximum of the
inhomogeneity (∂xφ = 0). This velocity profile, together
with the volume fraction dependent differential activity
A(φ) (Eq. (3c)), may cause the emergence of spikes in the
volume fraction around the initial inhomogeneity where
∂xφ is largest. These spikes can move inward due to dif-
fusion and amplify the initial perturbation (see movies in
Supplemental Material [39],VI).

When the diffusivity vanishes, i.e. D̃ = 0, the insta-
bility occurs for Ã > Ãc with Ãc = 1/φ0 denoting the
critical activity (in real units: Ac = λ/φ0). It is asym-
metric with respect to volume fraction and the instability
vanishes for φ0 → 0 (Fig. 1(a)). The origin of this asym-
metry arises from the difference in passive properties of
the two phases (Eqs. (4)). Symmetry in volume fraction
can for example be restored if both phases are treated
as fluids, or as viscoelastic material with equal trans-
port coefficients. The growth rate of the largest growing
mode, ω+(q), is real for all wavenumbers if D̃ = 0 which
indicates a non-oscillatory growth of modes (see Supple-
mental Material [39], IV, for plots of ωk(q)).

For non-zero diffusivity, the critical activity increases
(Eq. (6) and Fig. (2)(c) black line). The term B = 1/(1−
φ0) connected to viscous transport causes the instability
to vanish also at large volume fraction (Fig. 1(b)). In ad-

dition, for D̃ 6= 0, the growth rate ωk(q) can have a non-

zero imaginary part. At the transition boundary between
the stable and unstable regions, the growth rate is com-
plex for all wavenumbers (dark blue/gray in Fig. 1(b)).
However, deep in the unstable regime, the growth rate
becomes real for small q but there remains a complex
and unstable band of wavenumbers (light blue/gray in
Fig. 1(b)). The width of these band of wavenumbers
decreases to zero as the diffusivity approaches zero (see
Supplemental Material [39], IV).

These two different characteristics in the growth rate
obtained from the linear stability analysis indicate that
nonlinear evolution of the patterns might also differ in
these regimes. To investigate the pattern dynamics we
numerically solved the non-linear equations in one and
two dimensions; see Supplemental Material [39], III, V,VI
for definitions of the used activity functions, details on
the numerics, and movies. In one dimension and the
limit of zero diffusion, we find that the volume fraction
and displacement steadily grow; a behavior that is con-
sistent with a real dispersion relation. In the regime of a
purely complex dispersion relation domains of high and
low volume fraction exhibit a tendency to synchronously
oscillate with a frequency that is roughly determined by
the time to diffuse the size of a domain. On longer time-
scales this oscillating state can spontaneously break the
left-right symmetry and the domains collectively move
in one direction reminiscent of traveling fronts found
in fluid-fluid biphasic matter in the presence of osmotic
forces [45]. In contrast, in the mixed case where the dis-
persion relation is real and complex, the domains of high
and low volume fraction separated by sharp interfaces
seem to drift while they undergo fusion and break-up
events.
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FIG. 2. Patterns and phase diagram in two dimensions obtained from numerically solving Eqs. (3) (see Supplemental
Material [39], V,VI for details). (a,b) Two representative snapshots of patterns observed in our active poroelastic model. Black

bar depicts the unit length ` =
√
ζ/Γ0. Parameters: φ0 = 0.5, and (a) D̃ = 0.4 and Ã0 = 6, (b) D̃ = 0.005, Ã0 = 10.

The black lines depict the displacements of the solid phase. For lower diffusivity, as expected we see sharper boundaries as
activity-driven demixing progresses. (c) Phase diagram as a function of non-dimensional diffusivity D̃ and activity amplitude
A0. Squares indicate parameters where the numerical solution shows the emergence of spatial-temporal patterns. Blue/red
squares correspond to pattern morphologies shown in (a),(b). The black lines depict the result from the linear stability analysis
for Poisson ratio ν ≈ 0.5. Parameters above the black curve are linearly unstable; the phase space between the black and blue
dashed lines correspond to oscillatory modes for all unstable wavenumbers. In the numerics we considered a specific choice of
the activity function (Supplemental Material [39], III) to confine the range of volume fraction φ (color bar). This choice ensures
the approximate validity of linear elasticity.

In two dimensions we observe similar dynamics. For
parameters closer to the transition line where all unsta-
ble modes are oscillatory, the system shows a pulsatory
type of pattern (Fig. 2(a)). Deep in the unstable regime

of the stability diagram (e.g. low D̃ and high activity am-
plitude A0) domains with sharp and roughened interfaces
drift, split and fuse (Fig. 2(b)). The onset of the insta-
bility and the two pattern morphologies determined nu-
merically match the results obtained via linear stability
(Fig. 2(c)). However, in two dimensions, we do not ob-
served a collectively moving state. The inter-phase diffu-
sion destabilizes segregated domains on long time-scales
leading to oscillatory patterns. In systems with low dif-
fusivities, the spatial standard deviation of displacement
and volume fraction steadily increases and saturates once
the system reaches its quasi stationary state, while the
velocity becomes vanishingly small.

Our study shows how differential activity between the
solid and fluid phases that constitute an initially ho-
mogeneneous poroelastic medium can drive a mechani-
cal instability. It thus complements instabilities driven
by differential size [46], differential shape [47], differen-
tial diffusion [48] and differential adhesion [49–51]. More
specifically, it generalizes one-component active fluid ap-
proaches (e.g. [12]) to two phases that can segregate due
to the presence of active stress [32, 33]. Activity and
the interactions between the phases can cause an insta-
bility leading to patches where solid or fluid matter is
enriched. Though we have illustrated the instability for
a specific set of constitutive equations (Eqs. (4)) the ex-
istence of the instability is generic, i.e. it can occur for
any combination of passive mechanical properties of the

phases. Furthermore, it predicts that depending on the
rate and ability of transport of material and stress in
the biphasic material, there will be pulsatile instabilities
leading to the assembly, disassembly and drift of solid-like
clusters that undergo fusion and fission. Thus, it might
thus play an essential role in patterning in cell sorting
in tissues, disintegration and macroscopic contractions
in super-precipitated systems [9, 19, 53] and patterns in
the cellular cortex or the cytoplasm [27, 28]. We hope
that it will soon be possible to connect these ideas to
concrete experimental realizations with defined types of
differential activity and material rheology.
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