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Mechanical equilibrium states of Cellular Matter are overwhelmingly metastable and separated
from each other by topology changes. Using theory and simulations, it is shown that for a wide
class of energy functionals in 2D, including those describing tissue cell layers, local energy differences
between neighboring metastable states as well as global energy differences between initial states and
ground states are governed by simple, universal relations. Knowledge of instantaneous length of
an edge undergoing a T1 transition is sufficient to predict local energy changes, while the initial
edge length distribution yields a successful prediction for the global energy difference. An analytical
understanding of the model parameters is provided.

In interacting many-particle systems, energy land-
scapes are complex and hard to analyze, in particular
when disorder prevents symmetries. Considerable effort
has focused on particle aggregates with short-range in-
teractions (hard-core or soft) in the context of granu-
lar media [1–4], optimal packings [5–8], or the descrip-
tion of jammed states [9–12]. In Cellular Matter, on the
other hand, the main energy contributions result from
the shape and properties of the interfaces between de-
formable domains that fill available space (with a neg-
ligible continuous phase), making the interfaces surfaces
of polygons (in two dimensions) or polyhedra (in three
dimensions) [13, 14]. The exclusion of bulk energy contri-
butions generally means that the areas (2D) or volumes
(3D) of individual domains remain constant, while their
shape and relative positioning is variable; the simplest
physical example is a dry soap froth [15]. Cellular Mat-
ter also includes large classes of systems considered in the
context of modeling biological tissues, with energy con-
tributions from elasticity and cell-cell adhesion [16–18],
bulk elasticity [19, 20], or viscous effects [21, 22].

Recent work has focused on low-energy states of Cellu-
lar Matter, which we will call ”ground states”, although
the global lowest-energy state is in general unknown and
may not be unique [23]. Ground states in this sense are
found through a variety of protocols and annealing strate-
gies, and their energies are typically insensitive to the
method [23, 24]. Tissue-like 2D systems show a qual-
itative transition of the ground state: For low values
of inter-domain adhesion energy (relative to elastic de-
formation penalties), the material ground state retains
rigidity (finite resistance to external forces) [18], while
for higher adhesion it becomes degenerate [25, 26] with
individual domains minimizing their energy separately
(the material becomes ”floppy”). This ”loss of rigidity
transition” [19] occurs for static as well as for fluctuat-
ing systems, where it resembles a solid-fluid transition
[19, 27].

The present work, by contrast, focuses on metastable
states (local energy minima) significantly above the
ground state energy. These are common in cellular sys-
tems in nature: If the energy barriers exceed thermal en-

FIG. 1. (a) A T1 transition flipping an edge of initial length
L, going through an unstable four-way intermediate configu-
ration and ending up with altered topologies of adjacent cells.
Colors represent polygonal edge number: 5 (yellow), 6 (grey),
7 (blue). (b) Binned plot of edge length change |δL| as a
function of distance r from the center of the T1 edge; rs (ver-
tical dotted line) is the distance beyond which the analytical
model assumes stochastic length changes; (c) The standard
deviations of absolute and relative edge length changes for
r > rs decay as exp(−κr) (black dashed line).

ergies, as expected for domains above colloidal size, a sys-
tem needs induced stimuli to evolve towards the ground
state. We show how limited information on the geom-
etry of a generic rigid 2D cellular system quantitatively
predicts the energy of the metastable states, governs in-
dividual topological transitions, and describes an efficient
pathway of lowering energy towards a ground state.

Cellular matter domains (identified by index i) inter-
act with nearest neighbors only, each contributing to a
total energy E =

∑
iEi. Restricting ourselves to 2D

systems, the requirement of dominant interfacial energy
means that we can generally write

Ei =
∫
Pi

uP,i(s)ds = c0iPi + 1
2c1iP

2
i + . . . , (1)

expanding the general energy per length uP,i(s) in the
perimeter lengths Pi. The shown truncation after the sec-
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ond term is representative of the generic class of 2D tissue
model studied in the recent literature [16, 18, 19, 25, 28].
For domains or cells of the same type, the coefficients are
uniform (c0, c1).

Setting c1 = 0 describes a 2D foam, identifying the
interfacial tension with c0 (= 1 without loss of general-
ity). Including the second order term in Pi recovers the
general case of ”tissue” energy. By rearranging terms, we
obtain the following two functionals,

Ef = 1
2L0

∑
i

Pi, Et=
1

2L0

∑
i

(
(Pi − Pi,0)2

Pi,0
− γPi

)
(2)

where all lengths are normalized by L0, the edge length
of a regular hexagon of area Atot/N for a system of N
domains covering an area Atot. In Et, the first and the
second terms can be interpreted as perimeter elasticity
and adhesion energy, respectively [16, 18]. Pi,0 is the
mechanical equilibrium perimeter of cell i in isolation,
here chosen as the perimeter of a circle with the same
area as domain i (other choices of Pi,0 merely rescale
relevant energy differences [18]). The dimensionless ad-
hesion strength γ is normalized by the perimeter elastic
modulus. It was shown [17–19, 25] that loss of rigidity
occurs when γ > γc ≈ 0.12. Below this value, γ is a non-
geometric determinant of system energy. We will show
that energies can, nevertheless, be inferred from geome-
try alone.

Metastable states are separated from each other by T1
topological transitions [30], where a single edge of length
L reorients (it ”flips”) to change topology of four neigh-
boring cells (Fig. 1a). For rigid/solid states (foams or
tissues with γ < γc), there are metastable states on both
sides of the transition, while the intermediate state of
four-way-connected edges is a local maximum (the en-
ergy barrier) [31].

We evaluate metastable states in Surface Evolver [32]
(SE) with the quadratic or circular arc vertex models
(i.e., edges between domains contain additional vertices
and are generally not straight), on rectangles with peri-
odic boundary conditions containing typically N = 400
or 900 domains. Initial patterns are Voronoi constructs
from various point distributions. SE fixes domain areas
to match a desired area distribution (polydispersity is
quantified by its coefficient of variation cA) and finds a
local energy minimum with the given topology and en-
ergy functional. We analyze the metastable states after
and before the T1. Geometrically, T1s are local events
– the edge length changes |δL| and their standard de-
viation σδL decay exponentially with distance from the
flipping edge. Figs. 1b,c identify a characteristic decay
scale κ−1 ≈ 2.8, in quantitative agreement with earlier
findings [33].

This study focuses not on the energy barrier height
between the states [28], but on the distribution of the
energy differences ∆E between the system energies after

FIG. 2. (a) Energy change by T1 transition ∆E vs. ini-
tial edge length L in monodisperse foam samples (blue) with
binned data for ∆E < 0 (orange circles) and the overall lin-
ear relation (3) (dashed line); (b) the same in polydisperse
foams and polydisperse tissue systems with different adhe-
sion; (c) Simplified local configurations for analytical calcu-
lations: (left) monodisperse hexagonal pattern, (center) one
quadruple defect with equal cell areas, (right) a quadruple
defect with area polydispersity (at fixed total area). Ver-
tex positions indicated in red are fixed, the others represent
optimization variables. (d) Combined ∆E(L) data from all
simulations, binned (circles) with best linear fit using α,Lc

(black) and analytical linear relation using αa, Lc,a (red); (e)
like (d), for ∆E(`) data and correlations using β, `c and their
analytical analogs βa, `c,a.

and before the T1. We find that the expectation value of
∆E has a strong linear correlation with the initial length
L of the flipping edge,

∆E = α (L− Lc) . (3)

As seen in Fig. 2a, the scatter around this linear rela-
tion is particularly small for energetically favorable T1s
(∆E < 0). For this range, data from >∼ 30,000 T1 tran-
sitions for systems of various polydispersities and various
energy functionals were analyzed. It is a surprising fact
that α and Lc are found to be system-independent and
robust against protocol changes: (i) different methods of
domain preparation – see the Supplemental Material –
have no perceptible effect on (3) or on the scatter of the
data; (ii) the order of T1s is irrelevant; (iii) widely differ-
ent polydispersities result in the same values (Fig. 2b);
(iv) even simulations using Et are in quantitative agree-
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ment with those using Ef : If the perimeter lengths of
the tissue in mechanical equilibrium are P ∗i , computing
E∗f = 1

2L0

∑
i P
∗
i yields an equivalent foam energy whose

correlation with L is quantitatively the same (Fig. 2b),
even though the energetics of the T1 processes that yield
the configurations are quite different, and the configu-
rations are not metastable states under Ef . The linear
correlation (3) remains unchanged for all ”tense” tissues
(γ < γc). Beyond γc, the system loses rigidity and all ∆E
are trivially zero. Very recent work on three-dimensional
epithelial sheets [27] likewise finds a linear relation be-
tween flipping-face area and energy differences in agree-
ment with (3).

An average over all data is described well by (3) with
a universal critical edge length Lc ≈ 0.611 and a uni-
versal slope α ≈ 0.827. Beyond empirical data, we can
obtain analytical approximations to α and Lc from the
simple elementary T1 transition between a honeycomb
pattern and a quadruple defect (two neighboring dislo-
cations, Fig. 2c). Changing the areas of the pentagons
and heptagons generates elementary polydisperse config-
urations. All vertices not belonging to cells participating
in the T1 are fixed at their honeycomb positions (red in
Fig. 2c). Minimizing Ef,t with respect to the remaining
degrees of freedom yields analytical metastable state ge-
ometries as solutions to a system of algebraic equations
(see Supplemental Material). A linear fit to the resulting
∆E(L) values obtains αa ≈ 0.791 and Lc,a ≈ 0.627, in
very good agreement with data (Fig. 2d).

Now we use this information about energetic effects of
(spatially local) T1s to infer the global energy of a given
metastable state, not only for purposes of easy general
diagnostics, but in order to assess whether metastability
interferes with the ability to detect the loss-of-rigidity
transition mentioned above. Both simulations and ana-
lytical computations are used. The simulations should
reflect processes of mechanical excitation overcoming en-
ergy barriers, e.g. by shearing foams [34, 35], agitating
emulsions [36, 37] or by cell mobility in tissues [38],
so that the system energy approaches a ground state
through successive T1s. Eq. (3) suggests flipping short
edges (L < Lc) will selectively lower the system energy.
However, simulations may miss energetically favorable
edge flips if these edges are surrounded by large-area cells
(they are relatively short, but absolutely longer than Lc).
Therefore, we shall focus on relative edge length `,

` = L/min(L0i, L0j) , (4)

where L0i = 21/23−3/4A
1/2
i is the edge length of a regular

hexagon of area Ai, and the domains i, j share the edge.
As Fig. 2e shows, ∆E(`) is still a linear function,

∆E = β (`− `c) , (5)

and can still be described with system-independent pa-
rameters `c ≈ 0.654 and β ≈ 0.791 (see Supplemental

FIG. 3. (a) Decrease of energy with the number of T1 transi-
tions for three different algorithms. The ”greedy” algorithm
always flips the current shortest edge and yields a very good
approximation to the ground state energy in a small number
of steps. (b) Evolution of the relative edge length probability
distribution pn(`) for a polydisperse (cA = 0.4) foam sample
of N = 900, showing distributions at n = 0 (p(`)), n = 88,
and n = nfin = 324.

Material for data). These parameters can be understood
by analyzing the extreme cases: Near the ground state,
the domain shapes do not deviate much from regular
polygons, for which the ratio of perimeter to A1/2 is es-
sentially constant [39]. An average polygon undergoing
a T1 with L ≈ Lc then has a shorter perimeter by the
factor (5 + Lc)/6; with (4) this leads to the estimate
`c,a = 6Lc/(5 + Lc) ≈ 0.654. Conversely, any T1 with
` → 0 must have the same result as L → 0, so that
αLc = β`c, resulting in βa ≈ 0.772. The analytical esti-
mate again proves very accurate (Fig. 2e).

Our SE simulations establish metastable states after
every T1 of a selected edge. Figure 3a compares the
energy reduction ∆Etot(n) = E(n) − E(0) after n T1s
using different selection strategies: systematic cycling
through a complete list of edges, random selection, and
the ”greedy” algorithm suggested by (5), which always
flips the edge with the shortest current `. All algorithms
reverse T1s with ∆E > 0, and try a different edge next;
they all asymptote to very similar energies (supporting
the notion of a well-defined ground state energy), but
the greedy algorithm needs much less computational ef-
fort (and its final energy is slightly lower). These findings
are independent of polydispersity or energy functional.

Analytically, a total energy drop as in Fig. 3a can be
predicted under the assumption that the effects of the
(spatially localized) T1s are independent. Then, Etot(n)
can be inferred from the initial probability distribution
p(`) only – precisely those edges with ` < `c should flip.
In Fig. 3b, a typical development of p(`) with n in sim-
ulations is shown – indeed, the probability weight below
`c becomes negligible towards the end.

Then, an edge of length ` flips after n(`) T1s, such that

n(`) = 3N
∫ `

0
p(`′)d`′ , (6)

where 3N is the total number of edges, and the predicted
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FIG. 4. Energy decrease with T1 number n comparing the
simulation results (red; greedy algorithm) with theoretical
predictions from (8) (orange, dashed) and the refined theory
(9) (blue, solid). (a) Foams of different polydispersity, using
Ef ; (b) Tissues (E∗

f , cA = 0.4) with γ = 0 and γ = 0.1.

final number of T1s is nfin = n(`c). It follows that

∆Etot(n) =
∫ `(n)

0
3N∆E(`)p(`)d` , (7)

where `(n) is given by inverting (6). Taking into account
(5) and using integration by parts, it is easy to show that

∆Etot(n)
3Nβ`c

= `(n)− `c
`c

P (`(n))− 1
`c

∫ `(n)

0
P (`)d` , (8)

with P (`) ≡
∫ `

0 p(`
′)d`′. Eq. (8) gives the predicted en-

ergy decrease as a fraction of a hypothetical maximum;
note that −β`c = ∆E(0) according to (5).

The prediction (8) only needs the initial distribution
p(`) for ` < `c; any integrable fit to p(`) yields an ex-
plicit analytical expression for ∆Etot. Figure 4 compares
greedy simulation results of different foams and tissues
(only energy-lowering steps are accepted) with (8); for
tissue systems, equivalent foam energies E∗f are again
used. The agreement is good, but |∆Etot| is systemati-
cally underestimated by typically 5− 15%.

This bias can be eliminated by modeling the shape
changes in pn(`) shown in Fig. 3b; these come about
because T1s induce exponentially decaying fluctuations
in the absolute or relative lengths of edges beyond a
characteristic distance rs (cf. Fig. 1b,c). This stochas-
tic fluctuation of width σ` acts as a convolution on p(`),
increasing its width and lowering the value of `(n) to
`(n) − ∆`, so that the currently shortest edges become
slightly shorter and their T1 lowers the energy slightly

more. The system-independence of the features seen in
Fig. 1c and Fig. 2e allows for an analytical computation
for this convolution in the limit of Gaussian distributions,
from which ∆` ≈ 0.037 follows. The details are found in
the Supplemental Material.

Accordingly, we modify (8) to

∆Etot(n)
3Nβ`c

= `eff(n)− `c
`c

P (`(n))− 1
`c

∫ `(n)

0
P (`)d` , (9)

with `eff = max(`−∆`, 0), to avoid negative edge lengths.
The systematic error in the comparisons to simulation
results is largely eliminated (see Fig. 4), though a sta-
tistical error of a few % remains (see Supplemental Ma-
terial). The predicted |∆Etot| is still obtained from the
initial distribution only, and thus the asymptotic ground
state energy is accurately predicted from just a snapshot
of an initial metastable state. We stress that the sim-
ulations employ a variety of strategies for annealing to
the ground state [40], which can lead to a larger empiri-
cal nfin, but nevertheless this ”single-shot” prediction of
∆Etot is in good agreement. Also note that tissue sam-
ples with γ = 0.1 are much closer to the critical γc than
those with γ = 0, but the quality of the prediction is
unchanged.

We have demonstrated that the geometry of 2D
metastable states quantitatively determines their energy
both locally and globally, beyond the trivial summing of
edge lengths to obtain a foam energy: locally, the ∆E
of a T1 is predicted by its edge length. Globally, T1 en-
ergies integrate to approximate the metastable state en-
ergy above the ground state ∆Etot. Energy-lowering T1
transitions are almost exclusively confined to edges with
relative length ` < `c, and the critical value is univer-
sal across polydispersities and energy functional forms.
Only these edges ”store” the structural energy above the
ground state, and they are relatively few (we did not
find metastable states with P (`c) > 0.18). Apart from
the foam and tissue models discussed here, we have con-
ducted less extensive simulations with energy function-
als including area elasticity, with altered boundary con-
ditions, and even with spring-like interactions, without
changes to the reported relations. The remarkable sim-
plicity and generality of these findings is reminiscent of
the classification of rigid and floppy ground states by the
purely geometric shape index p̄ =

∑
i Pi/A

1/2
i /N of the

domains, independent of energy functionals [18, 19, 41].
Likewise, we rationalize the universal nature of the rela-
tions by the strong geometric constraints imposed by a
space-filling 2D structure with rigid domain boundaries,
making all possible T1 energy changes perturbative. Be-
yond the loss of rigidity transition, domains acquire dif-
ferent geometric degrees of freedom, and the relations
cease to be valid. Importantly, however, our results show
that metastable states of rigid/solid systems can have val-
ues of p̄ (i.e., equivalent foam energies) significantly larger
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than the critical p̄c for loss of rigidity in the ground state.
While there are other indicators of floppy/fluid systems,
this illustrates that the diagnostic meaning of p̄ depends
on whether the system is close to the ground state.

According to our results, a simple snapshot of any
metastable 2D sample (a tissue, an emulsion, a polycrys-
tal) in a rigid/solid state suffices to classify it in terms
of its distance from the type of ground state analyzed in
previous work [19, 25]. Short edges are weak spots favor-
ing T1 transitions, and a heterogeneous spatial distribu-
tion indicates mechanically weak regions. The diagnos-
tics of material properties and their spatial distribution
(in industrial applications) or the occurrence and distri-
bution of pathological changes (in biological tissues) is
aided by these findings. The geometric information used
here can be further combined with topological statistics
[29, 34, 42], which is the subject of ongoing work [43].
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