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By applying measurements of the dielectric constants and relative length changes to the dimer-
ized molecular conductor x-(BEDT-TTF),Hg(SCN)2Cl, we provide evidence for order-disorder type
electronic ferroelectricity which is driven by charge order within the (BEDT-TTF)2 dimers and sta-
bilized by a coupling to the anions. According to our density functional theory calculations, this
material is characterized by a moderate strength of dimerization. This system thus bridges the gap
between strongly dimerized materials, often approximated as dimer-Mott systems at 1/2 filling, and
non- or weakly dimerized systems at 1/4 filling exhibiting charge order. Our results indicate that
intra-dimer charge degrees of freedom are of particular importance in correlated k-(BEDT-TTF).X
salts and can create novel states, such as electronically-driven multiferroicity or charge-order-induced

quasi-1D spin liquids.

PACS numbers: 77.80.-e, 77.84.Jd, 71.30.+h, 71.15.Mb

Introduction. — Electronic ferroelectricity, where elec-
trons play the role of the ions in conventional displacive
ferroelectrics, has recently become an active area of
research! ®. Characteristic of this novel type of ferroelec-
tricity is that the polar state is controlled by electronic
degrees of freedom of charge, spin and orbital nature, im-
plying the intriguing possibility of cross-correlations with
the material’s magnetic properties.

A key phenomenon for electronic ferroelectricity is
charge order (CO), resulting from strong electronic cor-
relations, and being ubiquitous in doped transition-metal
oxides, such as high-T,. cuprates® or manganites’”. Par-
ticularly clear examples of CO have been found in the
families of TMTTF® and BEDT-TTF? 2 (in short ET)
molecular conductors with 1/4-filled hole bands. It has
been established that in these systems, CO and accom-
panying ferroelectric properties'® ® result from the com-
bined action of a strong onsite Coulomb repulsion U
along with a sizable inter-site interaction V1618,

More recently, the research in this area has gained a
new twist by the observation of strong hints for ferro-
electricity in some dimerized ET-based materials*®19-2%,
This came as a surprise as these systems have been pri-
marily discussed in the so-called dimer-Mott limit?% 24,
where the Mott insulating state is solely driven by a
strong U, and lacks a CO instability. In this limit, (ET)
dimers are considered as single sites due to a strong inter-
molecular interaction ¢; (cf. Fig. 1(b)), being much larger

than the inter-dimer interactions t and ¢’ (Fig. 1(c)). This
results in a 1/2-filled band, in which intradimer charge
degrees of freedom are completely frozen. However, re-
markably, for k-(ET)3Cu[N(CN)3]Cl, ferroelectric order
was found at Trg?> 27 which coincides with long-range
antiferromagnetic (afm) order?® at Ty ~ Trg. It has
been suggested that in these dimerized systems the elec-
tric dipoles originate from CO%29:252932 je a charge
disproportionation by +4 within the ET dimers, suggest-
ing an essential breakdown of the dimer-Mott scenario.
However, this view has been challenged as a definite proof
of CO for this family of dimerized ET systems is still
missing?®? 5.

In this Letter, we provide evidence for an
electronically-driven ferroelectricity in the related
dimerized salt k-(ET)Hg(SCN)3Cl, where CO was
clearly identified by vibrational spectroscopy?:37.
Based on our density functional theory calculations,
this material has a moderate strength of dimeriza-
tion thus bridging the gap between 1/4-filled CO
and 1/2-filled dimer-Mott systems. We demonstrate
that the transition from a metal to a CO insulator
in this compound at Th;; = Teco =~ 25 — 30K is
accompanied by the formation of ferroelectric order of
order-disorder-type, where disordered electric dipoles
exist already in the paraelectric phase, and become
ordered below Trg = Thprr. Our results highlight the
role of intra-dimer degrees of freedom in creating novel



FIG. 1. (a) Crystal structure of k-(BEDT-TTF),Hg(SCN)2Cl
along the out-of-plane a axis (top) and side view on the an-
ion layer (bottom)3®; (b) View on the (ET)J plane showing
the typical k-type arrangement of molecules. The cyan el-
lipses surround single ET molecules. Two parallel-aligned ET
molecules form dimers. The four dominant hopping terms are
denoted by t1 (pink), t2 (dark green), t3 (blue) and t4 (light
green); (c) Schematic of the effective-dimer model with hop-
ping parameters t (green) and ¢’ (blue).

states, such as electronically-driven multiferroicity or
CO-induced quasi-1D spin-liquids. In addition, our
findings underline the model character of the x-(ET)2X
systems in studying the interplay of charge-, spin-
and lattice3®-degrees of freedom in the presence of
geometrical frustration®® close to the Mott transition.

Structure and ab initio-derived hopping integrals. —
k-(ET)2Hg(SCN)2Cl, crystallizing in the monoclinic
structure363% C2/c, consists of alternating thick lay-
ers of organic ET molecules, separated by thin anion
sheets, cf. Fig.1(a). Ab initio density functional the-
ory calculations were performed using the full poten-
tial local orbital (FPLO)*® basis and generalized gradi-
ent approximation?! for the experimentally determined
structure® at room temperature. The tight binding pa-
rameters (t1,to, t3,t4) (see Fig. 1(b)) were extracted from
fits to the bandstructure. We find values at 296 K of ¢
= 126.6meV, to = 60.0meV, t3 = 80.8meV, and t, =
42.0meV (see SI for T dependence of the ¢;’s). We use
the usual geometric formulas ¢ = (t2 + t4)/2, t' = t3/2
for assessing the hopping parameters ¢ = 51.0meV and
t' = 40.4meV of the effective-dimer model (see Fig.1
(c)).

Ezperiments. — Single crystals of
k-(ET)2Hg(SCN)2Cl were grown by electrocrystal-
lization (see SI). Overall 4 crystals (3 for dielectric
measurements, 1 for thermal expansion measurements)

of two different sources (labeled with either AF or JAS)
were studied to check for sample-to-sample variations.
Dielectric measurements were performed with the elec-
tric field applied along the out-of-plane a axis, the only
possible configuration because of the distinctly lower
conductance along this axis. In the low-frequency range
(v < 1MHz), the dielectric constant € (real part of the
permittivity) and the real part of the conductivity o’
were determined using a frequency-response analyzer
(Novocontrol alpha-Analyzer) and an autobalance bridge
(Agilent 4980). The system’s high conductivity and
the small sample size cause some uncertainties in the
absolute values of ¢/. Measurements of relative length
change AL;(T)/L;, with i« = a,b, ¢, were performed
using a home-built capacitive dilatometer?? with a
resolution AL;/L; > 10719,

Figure 2 shows the dielectric constant € (T") (a) and
the real part of the conductivity o’'(T) (b) of crys-
tal #AF093-1. We find an increasing € (7") with de-
creasing temperature, culminating in a sharp peak at
Trr ~ 25K, indicative of a ferroelectric transition (peak
value = 400). As shown by the dashed line in Fig.2(a),
this increase can be well described by a Curie-Weiss law,
€ —eopr = C/(T — Tew), with a Curie-Weiss temper-
ature Tcw = (17 £ 2)K and an offset e,5y, likely of
extrinsic nature. The relatively small magnitude of the
Curie constant of C' = (2500 + 600) K is consistent with
order-disorder ferroelectricity®® while C for displacive
ferroelectrics* is usually of the order of 10°. By using
a simple expression?® to relate the Curie constant to the
size of an individual dipole?® p, we find p ~ 0.4ed, with
e the electronic charge and d ~ 4.0 A the distance be-
tween two ET molecules within the dimer. In light of the
strong simplifications involved in this relation and the
experimental uncertainties associated with the absolute
values of €, this value of p is in reasonable agreement
with the expected out-of-plane dipole moment of 0.13ed
created by the observed charge disproportionation3® of
+ 0.1e and the relative shift of the molecules within the
dimer resulting in a tilt of the dipole moment by = 50°
with respect to the out-of-plane a axis. Below 25K, €/(T)
exhibits an abrupt drop and levels off at ¢ ~ 8 at low
temperatures. By looking at the inverse dielectric con-
stant in the inset of Fig.2, we find that, in a limited
temperature range, ¢'(T") for T < Tpg can also be de-
scribed by a Curie-Weiss behavior (solid line), albeit with
a distinctly larger slope |d(1/¢€)/dT|.

Corresponding measurements on a second crystal
(#JAS1721) from a different source, performed with a
different measurement device, revealed qualitatively sim-
ilar behavior with Trr &~ 30K (see SI, Fig.3). We did
not observe any significant frequency dependence of the
dielectric properties for frequencies below about 1 MHz
(see SI, Fig.2). However, in high-frequency measure-
ments up to about 1 GHz (see SI, Fig. 4), we found an in-
creasing suppression of the peak in € (7T") with increasing
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FIG. 2. Temperature dependence of the dielectric con-
stant €'(T) (a) and conductivity o'(T) (b) of k-(BEDT-
TTF)2Hg(SCN)2Cl crystal #AF093-1 measured at 935 kHz.
Data were taken upon warming. The dashed line in (a) is
a fit with a Curie-Weiss law (Tcw = 174K, C = 2500K)
with an additional offset. The solid line connects the data
points. The inset shows the inverse dielectric constant; the
lines correspond to Curie-Weiss behavior.

frequency that resembles the typical behavior of order-
disorder ferroelectrics®*.

The real part of the conductivity shown in Fig.2(b)
shows metallic behavior at higher temperatures. Below
25K, ¢/(T) rapidly drops by about three orders of mag-
nitude, indicating that Th;; >~ Trg. Similarly, for crys-
tals #JAS1721 and #AF087 (see SI, Fig. 8), we find a
rapid drop in o(T') at Ta;r ~ Trgr ~ 30K. These find-
ings, which are in good qualitative accord with literature
results®”, provide additional evidence that the dielectric
measurements indeed detect the intrinsic sample proper-
ties.

The characteristics of €(T), revealed in Fig. 2(a) (and
SI Fig. 3(a)), are remarkable in terms of the following as-
pects. First, the phenomenology closely resembles text-
book examples of first-order ferroelectric transitions re-
ported, e.g., for BaTiOs or AgNa(NO2)s (Refs. [44, 48,
49]). This includes a Curie-Weiss temperature depen-
dence both above and below Trp with strongly different
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FIG. 3. (a) Relative length change AL;/L; vs. T with i =
a,b,c of k-(BEDT-TTF)Hg(SCN)2Cl (crystal #AF087-4)
around the charge-order metal-insulator transition at Thsr ~
30 K. Data were collected upon warming. The individual data
sets were offset for clarity. Dotted line indicates an idealized
sharp jump for the c-axis data. (b) Relative length change
along the ¢ axis, AL./L., around Ths; measured upon warm-
ing and cooling.

slopes |d(1/€)/dT|, together with a Curie-Weiss temper-
ature Tow < Trp. Second, the observed temperature
(Fig.2(a) and SI Fig.3(a)) and frequency dependences
(SI Fig.2 and 4) indicate that k-(ET)2Hg(SCN)Cl rep-
resents an order-disorder-type ferroelectric. This con-
trasts with relaxor-type ferroelectricity, characterized by
a pronounced frequency dependence in €27, In fact,
a relaxor-type ferroelectricity has been observed for the
related k-(ET)2Hg(SCN)oBr salt?® which also stands
out by its anomalous Raman response®’. In this and
in other charge-transfer salts, the relaxational response
was ascribed to the dynamics of CO domain-walls or
solitons®!+52,

We stress that, a definite proof of ferroelectric-
ity, which usually includes measurements of polariza-
tion hysteresis or so-called positive-up-negative-down
measurements2®°3, was not possible for the present com-
pound due to its rather high conductivity, especially close
to Trr. However, taking into account the observed char-
acteristic temperature and frequency dependences in €
and the fact that very similar results in €¢(T") were ob-
tained for samples from different sources, by using differ-
ent devices, the present data provide strong indications
for ferroelectricity in x-(ET)2Hg(SCN),Cl.

A thermodynamic investigation of the character of the
CO transition is provided by measurements of the rela-
tive length change AL;(T)/L;. Figure 3 (a) shows the
result of AL;(T)/L; along the out-of-plane a axis (see
Fig.1) and the two in-plane b and ¢ axes around 30K.
We observe pronounced, slightly broadened jumps in the
sample length along all three axes at Ty ~ Tco ~ 30K
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FIG. 4. Proposed CO pattern in k-(BEDT-
TTF);Hg(SCN)2Cl, viewed within the ac plane (a) and
the bc’ plane (b). ¢’ accounts for a small rotation of the
c axis with respect to the a axis due to the inclination of
the BEDT-TTF molecules. Grey lines correspond to the
anions, green circles correspond to Hg(SCN)2Cl units of
the anion layer. White (black) rectangles correspond to
charge-rich (charge-poor) BEDT-TTF molecules with charge
0.5+ 6 (0.5 — §) in the charge-ordered state. Orange solid
lines illustrate the interaction path between the S and H
atoms in the BEDT-TTF layer and the Cl and C atoms in
the anion layer. Blue arrows indicate the shift of the anions
in response to the charge order in the BEDT-TTF layer.
Thick red arrows indicate electric dipoles p. (c) Dominant
magnetic exchange-coupling paths J,, J, and J' (see main
text) for the proposed CO state.

(see SI for a detailed determination of Ths; from the
present data set). The jump-like anomalies in AL;(T)/L;
and the observation of thermal hysteresis between warm-
ing and cooling (Fig.3 (b)) are clear signatures of the
first-order character of the CO transition, consistent with
the conclusion drawn above from the €'(T") results.

Surprisingly, the dominant lattice response to CO is
found along the out-of-plane a axis, yielding a pro-
nounced decrease upon cooling below To. This high-
lights a strong involvement of the anion layer in the for-
mation of the CO state as a result of the ionic character
of the material: The change in the charge distribution
within the ET layers from a homogeneous distribution
above Tco to a charge-modulated state below will neces-
sarily induce finite shifts of the counterions in the anion
layer®®. We therefore include the anions in the discus-
sion of possible CO patterns in &-(ET)2Hg(SCN)3Cl in
analogy to Ref. [55]. Figure 4 shows a schematic view of
the structure of x-(ET)3Hg(SCN)2Cl including the ET
molecules (rectangles) and the nearby anion layers. The
anions form a chain-like structure along the ¢ axis (grey
lines in Fig. 4) with short-side chains formed by the ter-
minal ligand Cl (green circles) along the b axis. For

the following discussion, we assume that the charge or-
der modifies the electrostatic interactions between the
cations and anions, which involve close contacts between
the electropositive S and H atoms in the donors, and
the electronegative Cl and C atoms in the anion layer.
Through these interactions, each (Hg(SCN)3Cl)™ unit in
the anion chain is linked to two E'T molecules belonging
to different layers (shown schematically by orange lines in
Fig.4(a)). Above Teo the charge is homogeneously dis-
tributed on the ET molecules (§ = 0), corresponding to a
charge of +0.5 e per ET. Thus, the position of the CI~ ion
is symmetric with respect to the surrounding (ET)*0-5
molecules. Upon cooling through T, the charge distri-
bution is modulated by 4§ within the ET layer?6. As a
consequence, in order to minimize the overall Coulomb
energy, the anions slightly shift towards the charge-rich
sites (white rectangles), as indicated by the blue arrows
in Fig.4(a). As this motion, which results in a dominant
effect along the a axis, is uniform for all chains it identi-
fies the CO pattern unambiguously, cf. Fig.4(a) and (b).
In the resulting CO pattern the charge-rich molecules are
arranged in stripes along the ¢ axis and alternate with
charge-poor stripes along the b axis (see Fig.4(b)). This
CO pattern is consistent with the suggestion put forward
in Ref. [36] based on the anisotropy of conductivity spec-
tra. We stress that this type of CO breaks the inversion
symmetry both within and between the layers, ensuring
long-range 3D ferroelectric order. However, the conclu-
sions on the structural change at the CO transition are
only speculative at present, as X-ray investigations at
10K?3%, aimed at detecting the CO pattern, failed to re-
solve the predicted symmetry-breaking shifts.

For discussing these results in the wider context of
dimerized (ET)2X materials, we use the ratio ¢/t
to quantify the strength of dimerization. In the
limit of weak or no dimerization, a mnon-magnetic
CO ground state is adopted, as has been well estab-
lished in f-phase salts'.  On the other hand, for
k-(ET)2Cu[N(CN)3]Cl, where t1/t’ ~ 5 reflects a rela-
tively strong dimerization®¥ %, the notion of a dimer-
Mott insulating state?? ?* has been widely used, and
the existence of CO as the origin of the observed fer-
roelectricity has been debated®® 3°. Hence, the present
k-(ET)2Hg(SCN)oCl system, with ¢1/t" ~ 3, being lo-
cated in the middle between these two extreme cases,
may provide the key for a better understanding of the
physics in the wide class of dimerized (ET)2X materials.
Our finding of ferroelectricity in x-(ET)2Hg(SCN).Cl,
which is most likely driven by the observed CO within
the ET dimers?%, clearly demonstrates the importance of
intra-dimer charge degrees of freedom in these materi-
als. Hence, the minimal model able to capture theses ef-
fects has to include two molecular orbitals on each dimer
and a 3/4 band filling. In fact, by using the hopping
parameters t1...t4 relevant for the rather strongly dimer-
ized k-(ET)2Cu[N(CN)3]Cl, and by using an extended



two-orbital Hubbard model on a triangular lattice at 3/4-
electron filling, Kaneko et al.3? recently revealed the pos-
sibility for a CO ground state for this material, pointing
to the relevance of intra-dimer degrees of freedom even
for stronger dimerization.

In light of the peculiar multiferroic state with Tpp ~
Tn proposed for k-(ET)2Cu[N(CN)3]Cl, one may ask
how charge order interacts with the magnetic degrees
of freedom in the present x-(ET)2Hg(SCN)2Cl material.
Initially, Yasin et al*” suggested afm order to coincide
with Teo in k-(ET)2Hg(SCN)2Cl, based on the result
of electron spin resonance (ESR) measurements. How-
ever, as discussed in detail in the SI, our own ESR in-
vestigations along with specific heat measurements fail
to reveal any clear signature of a magnetic transition
around Th;;. Naively, one may assign the absence of long-
range magnetic order to the geometric frustration, inher-
ent to the r-type triangular arrangement of dimers. In
fact, for the frustration paramter ¢/t we find 0.79 in the
effective-dimer model, which neglects CO, - a value signif-
icantly larger than t'/t ~ 0.43 for k-(ET)2Cu[N(CN);]CL
However, charge order must have an effect on the lo-
cal magnetic interactions due to the redistribution of
charge within each dimer®®?, i.e., in first approximation
Ji oc t2(1 £ A;5) with a proportionality constant A;.
Following Naka and Ishihara®®?, we anticipate that the
CO pattern in Fig. 4 would enhance interactions J,,, while
suppressing the coupling J; (see Fig.4(c)). At the same
time, J' would not be strongly affected by CO. We pro-
pose that this modification of the interactions may lead
to an effective dimensional reduction® due to the under-
lying frustration (J' ~ .J;) which promotes a quasi-1D
spin-liquid state. This novel CO-driven effect could then
explain the absence of magnetic order in the present ma-
terial. A crucial test of this proposal would be to probe
the dimensionality of spin correlations below Tco, via
e.g. polarized Raman scattering®”%' or thermal trans-
port anisotropy®2.

Summary. — Clear evidence is provided for an
order-disorder type ferroelectric state in dimerized
k-(ET)2Hg(SCN)2C1% | driven by charge order within the
(ET)2 dimers and stabilized by a coupling to the anions.
According to our ab initio density functional theory cal-
culations, this material is characterized by a moderate
strength of dimerization t;/t’ ~ 3. Our results high-
light the role of intra-dimer degrees of freedom in dimer-
ized (ET)2X materials in promoting intriguing states.
Besides the possibility for electronically-driven multifer-
roicity, we propose for the present material that charge
order in the presence of strong frustration may induce
a quasi-1D spin-liquid state as a consequence of dimen-
sional reduction.
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