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We study the excitation spectrum in the dimer phase of the Shastry-Sutherland model by using an unbiased
variational method that works in the thermodynamic limit. The method outputs dynamical correlation functions
in all possible channels. This output is exploited to identify the order parameters with highest susceptibility
(single or multi-triplon condensation in a specific channel) upon approaching a quantum phase transition in the
magnetic field vs. J ′/J phase diagram. We find four different instabilities: antiferro spin nematic, plaquette
spin nematic, stripe magnetic order and plaquette order, two of which have been reported in previous studies.

PACS numbers:

The Shastry-Sutherland model (SSM) has become a
paradigmatic Hamiltonian of frustrated quantum mag-
netism [1, 2] because it includes an exactly solvable ground
state [1], very heavy low-energy excitations [3–8], exotic
phases obtained upon varying the ratio J ′/J between two
competing exchange constants [4, 7, 9–16], and series of
magnetic field induced magnetization plateaux [3, 17–31].
Its realization in SrCu2(BO3)2 [3, 32, 33] enabled various
experimental studies, including magnetization [32, 34–39],
specific heat [40], inelastic neutron scattering (NS) [41–
47], far-infrared [48], electron spin resonance (ESR) [49,
50], Raman scattering [51] and nuclear magnetic resonance
(NMR) [37, 52, 53]. These studies revealed that a finite
Dzyaloshinskii–Moriya (DM) interaction [54, 55] must be
added to the SSM in order to account for several proerties
of SrCu2(BO3)2 [42–44, 46, 49, 50, 53, 56–60].

Despite the great theoretical efforts devoted to the SSM, the
problem is still far from being solved. Perturbative approaches
are only applicable in narrow regimes and conventional numer-
ical methods suffer from severe size effects. As a consequence,
the nature of the quantum phase diagram has been debated for a
long time [4, 7, 9–16]. It is thus desirable to develop and apply
alternative approaches. The infinite projected entangled-pair
states (iPEPS) is an example of an alternative approach that
works in the thermodynamic limit [16, 29, 61]. However, it
relies heavily on the initial guess of the physical states and it
is difficult to extract dynamical responses.

In this Letter, we introduce an unbiased variational method
to calculate the excitation spectrum and dynamical responses
(susceptibilities) of the SSM in the dimer phase [62]. The
method works in the thermodynamic limit and it complements
alternative approaches like iPEPS. The basic idea was origi-
nally introduced to compute the single-hole dispersion of the
square lattice t − J model [63, 64]. The same method was
applied to the Shastry-Sutherland lattice t − J model [65, 66].
Here we exploit this idea to compute dynamical correlators
and dominant instabilities. By working in a reduced Hilbert
space, which preserves all model symmetries, we obtain low
energy excitations classified by quantum numbers. We then
predict the character of the neighboring phases by detecting
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Figure 1. Lattice structure of the SSM. Intra-dimer and inter-dimer
exchanges are denoted by J(solid line) and J ′(dashed line). The basis
of the lattice is labeled by {a1,a2}. The point group operations
{σv,σd,C2,C4} are denoted accordingly.

the order parameter with highest susceptibility. Besides con-
firming the previously reported plaquette order and antiferro
spin nematic phases, we find two new phases, namely a plaque-
tte spin nematic phase and stripe magnetic ordering, induced
by simultaneously increasing the magnetic field and J ′/J. In
particular, the plaquette spin nematic phase explains the nature
of the two-triplon states (pinwheels) that crystallize at higher
field values [29].
We consider the spin- 1

2 SSM under a magnetic field [1]:

H = J
∑
〈i j 〉

Si ·Sj + J ′
∑
〈〈i j 〉〉

Si ·Sj − h
∑
i

Sz
i , (1)

where 〈i j〉 and 〈〈i j〉〉 denote intra-dimer and inter-dimer neigh-
bors. The unit cell has 4 sites (see Fig. 1). The exact ground
state for small enough J ′/J and h is a direct product of sin-
glet states on all dimers [1]. The elementary excitations of this
“dimer phase” are singlet-triplet excitations known as triplons.
Triplons are dressed by quantum fluctuations with a magnetic
correlation length ξ that increases with J ′/J. Methods that
can account for the spatial extent of these quantum fluctu-
ations should provide a good description of the low-energy
excitation spectrum of the dimer phase.



Westart the process by creating local excited states |ϕi〉 (e.g.,
single and two triplons). We then project these representative
states into subspaces with fixed momentum k,

|ϕi(k)〉 ≡ P̂k |ϕi〉√
〈ϕi |P̂k |ϕi〉

, (2)

where the projector is defined as P̂k ≡ 1
N

∑
r eik ·rT̂(r). N→∞

(thermodynamic limit) is the total number of unit cells, and
T̂(r) is the translation operator. Application of H to |ϕi(k)〉
generates new states that dress the corresponding quasi-
particle excitation. This procedure can be applied iteratively
to systematically improve the variational space. After M iter-
ations, we obtain a basis {ϕi(k)} with good quantum numbers
k and Sz

tot. The number of iterations determines the spatial
range l of the fluctuations that dress the quasi-particle, so the
method is then expected to produce accurate results for l & ξ.

The eigenvalues and eigenvectors of the Hamiltonian re-
stricted to the variational space are obtained by applying the
Implicitly Restarted Arnoldi Method [67, 68]. The eigenvec-
tors are classified by the Little Group of C4v for each momen-
tumk. A continuous phase transitionmanifests via a vanishing
gap (condensation) that signals a phase transition into a broken
symmetry state. The symmetry of the new state is determined
by the irreducible representation (IREP) of the eigenstate that
becomes gapless. To keep the method unbiased, the initial
basis must not break the point group symmetry ofH [69].
For illustration, we first focus on the Sz

tot = 0 sector relevant
to h = 0. We include D = 14 Sz

tot = 0 initial states to start
the iteration [70] and then apply Eq. (1) onto this basis to
systematically increase the variational space [71]. After ob-
taining the lowest energy eigenstates, we use the eigenfunction
to calculate Stot and its IREP [72].

In contrast to the result obtained with perturbative continu-
ous unitary transformations (CUTs) [7], we find that the first
instability as a function of J ′/J (for h = 0) takes place in the
Stot = 0 channel with IREP A2 [73]. Figure 2 shows the evo-
lution of the gap as a function of M . Convergence is reached
beyond M = 3 for J ′/J . 0.5, but the increase of ξ slows down
the convergence for larger J ′/J. Although Eq. (1) does not
conserve the triplon number, the state that condenses is adia-
batically connected with the corresponding Stot = 0 IREP A2
pure two-triplon state in the J ′/J→ 0 limit (see Fig. 2).

We can read out the critical value of J ′/J when this state
condenses. Figure 3a shows the evolution of the critical value
as we increase M (circles). At M = 8, (J ′c/J)(M=8) ≈ 0.702.
Previous tensor network based calculations [15, 16] showed
that the transition is actually of first order and the transition
point is at J ′c/J = 0.675 [16]. A susceptibility analysis, like the
one presented here, is in general inadequate to detect first order
transitions. However, it can still be used to detect the nature of
order parameter if the system still transitions into the broken
symmetry state with highest susceptibility [74]. Given that the
first order transition takes place when this susceptibility is still
finite, J ′c/J turns out to be smaller than the value at which the
susceptibility becomes divergent. This observation explains
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Figure 2. Gap of the lowest Stot = 0, k = (0,0) A2 state, at h = 0.
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Figure 3. Critical values of J ′/J for the condensation of different
states at 4 different magnetic fields.

the difference between the values of J ′c/J obtained with both
approaches. In addition, it illustrates their complementary
nature. The unbiased susceptibility analysis can be used to
detect candidates for broken symmetry states. These candi-
dates can then be tested with biased variational techniques,
such as iPEPS, which can produce more accurate values of the
transition point.
Since the two-triplon bound state has Stot = 0, the new

ground state (condensate) must be non-magnetic. Further-
more, since the A2 state is odd (even) under reflection (rota-
tion) [70], the new ordered state should only break reflection
but not rotation symmetries. These features are consistent with
the previously reported plaquette ordering [10, 13, 15, 16].
Figure 4b shows a schematic plot of the corresponding bond
ordering. As expected, 〈Si ·Sj〉 becomes different on different
plaquettes and there is no magnetic order. In other words, the
plaquette order parameter can be defined as 〈Si ·Sj −Si ·Sj′〉,
where i j and i j ′ are two bonds related by a mirror reflection
(see Fig. 4b).
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Figure 4. (a) Phase boundaries between the dimer state and its neigh-
boring phases, obtained from M = 8 iterations. (b) Plaquette phase,
order parameter defined as 〈Si ·Sj −Si ·Sj′〉. (c) Stripe phase, order
parameter defined as 〈Si −Sj〉. (d) Plaquette spin-nematic phase, or-
der parameter defined as 〈S+i S+j − S+i S+j′〉. (e) Antiferro spin-nematic
phase (bond density wave), bonds with the same line (solid/dashed)
but different colors have opposite 〈S+i S+j 〉 while bonds with different
lines have different |〈S+i S+j 〉|.

We consider now the case of non-zero magnetic field. The
energy of excited states with finite Sz

tot decreases linearly in
h. Figure 3b shows that the dominant instability for h/J = 0.2
corresponds to condensation of a state with Stot = 1, k = (0,0),
and IREP E , leading to the stripe magnetic order depicted
in Fig. 4c. The IREP E is a 2-dimensional representation
corresponding to the two possible directions of the stripes
(along a1 or a2). We note that the two same-color spins in
the same unitcell are not identical (the corresponding mirror
symmetry is broken).

The stripe state has the highest susceptibility over a narrow
range 0.66 . J ′/J . 0.70 for M = 8 iterations (see Fig. 4a).
Due to the frustrated exchange interactions, the energies of a
few other states are not much higher than the stripe state [70].
Among them, the lowest one is a two-triplon state with k =
(0,0) and IREP B1, corresponding to vector chiral order [75–
77]. Although their energies are slightly higher than the stripe

magnetic instability within M ≤ 8, the situation may change
in the M→∞ limit, or if small perturbations are added to the
original model.
The Stot = 2 excited states take over for higher magnetic field

values. Figure 3c shows that for h/J = 0.6 the lowest excited
state is the Stot = 2 two-triplon bound state with momentum
k = (0,0) and IREP A2. The fact that this state and the Stot = 0
state that condenses at zero field belong to the same point
group IREP A2 indicates that the condensation of the Stot = 2
A2 state also leads to “plaquette” ordering (shown in Fig. 4d);
the difference being that the Stot = 2 condensate also breaks the
U(1) symmetry group of global spin rotations along the field
direction, leading to spin-nematic ordering. In other words,
the local bond order parameter is 〈S+i S+j − S+i S+j′〉 instead of
〈Si ·Sj −Si ·Sj′〉 (i j and i j ′ denote two bonds connected by
a mirror reflection σd , see Fig. 4).
As indicated in Fig. 4a, the “plaquette spin-nematic” state

covers a wide range 0.40 . J ′/J . 0.66. It has been shown
in Ref. [29] that the 1

8 plateau at slightly higher magnetic field
values and J ′/J = 0.63 is induced by crystallization of Sz

tot = 2
bound states. A closer scrutiny of the “pinwheel” structure of
these bound states shows that they locally preserve rotational
symmetries, while breaking reflection symmetries [29], i.e.,
they are the same two-triplon bound states that we are finding
in the dilute limit.
Moving away from the plaquette spin-nematic phase to-

wards the J ′/J � 1 limit, it is already known from an early
perturbative calculation that Stot = 2 two-triplon bound states
with k = (π, π) give the highest susceptibility [19]. This is
confirmed by our variational method (see Fig. 3d). Since the
two-triplon bound state has momentum k = (π, π), the corre-
sponding ordered state also breaks translational symmetry. As
shown in Fig. 4e, 〈S+i S+j 〉 changes sign going from one unitcell
to its nearest neighbors. Similar to the case of the stripe order-
ing (which also comes from condensation of IREP E states),
there are two choices for aligning the bonds. We note that
the breaking of the C4 lattice rotational symmetry leads to a
modulation of 〈Sz

i 〉 that can be detected with NS experiments.
It is worthmentioning that the two spin-nematic states found

in this Letter are different from nematic phases discussed in
various other contexts [78–81]. The so-called “Ising-nematic”
ordering corresponds to (discrete) lattice rotation symmetry
breaking. In contrast, “spin-nematic” ordering corresponds to
broken spin rotational symmetry. The spin-nematic orderings
discussed in this Letter break both the point group symmetry
and spin rotation symmetry [82]. In other words, they are
simultaneously Ising-nematic and spin-nematic.
The frustrated nature of the SSM makes the calculation of

dynamical response a difficult task. Up to date, the only calcu-
lation including multi-triplon contributions is the perturbative
CUTs, which breaks down for J ′/J & 0.63 [83]. The varia-
tional Hilbert space generated by our method thus provides a
more reliable access to dynamical responses via the continued
fraction method [84].
Near the phase boundaries, we expect the susceptibilities of

corresponding order parameters to diverge at ω = 0. Magnetic
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Figure 5. T = 0 DSFs calculated near the phase boundaries at M = 8.
(a-c) Lorentzian broadening factor η = 0.02J is used. (d) Lorentzian
broadening factor η = 0.001J is used.

orderings, such as the stripe phase, are detected by computing
the dynamic structure factor (DSF) [70, 85]:

S−+(k,ω) = 2π
∑
ν

|〈ν |S+k |0〉|2δ(ω+E0−Eν), (3)

which is measured with inelastic NS. As shown Fig. 5b, the
lowest peak of S−+(k,ω) approaches ω = 0 near the phase
boundary indicating condensation of an Stot = 1 state.

The divergent susceptibilities of the other phases are re-
vealed by computing two-point dynamical correlation func-
tions of the corresponding order parameters. These order
parameters are the operators that create a state that has finite
overlap with the one that is condensing. For J ′/J � 1, the
lowest energy Stot = 2 eigenstates are known to be a linear
combination of triplons located on nearest (and next-nearest)
neighbors [19, 70]. Denoting the order parameter as AS2E

k
, the

corresponding susceptibility is

χS2E (k,ω) = 2π
∑
ν

|〈ν |AS2E
k |0〉|2δ(ω+E0−Eν). (4)

Similarly, using the approximate wavefunctions of the Stot = 2
A2 state and the Stot = 0 A2 state [70], we can also construct the
order parameters and compute the corresponding susceptibil-
ities χS2A2 (k,ω) and χS0A2 (k,ω). Figure 5 shows the nearly
divergent susceptibilities in each channel by picking appropri-
ate Hamiltonian parameters near the phase boundaries.

While the tendency toward stripe ordering can be detected
with inelastic NS, the experimental detection of the other
phases is nontrivial. Lattice distortions induced by the or-
der parameter through magnetostriction can provide indirect
evidence if they are large enough to be detected [75–77]. Ex-
perimental knobs, such as pressure, doping andmagnetic field,
can drive thematerial into different instabilities [39, 47]. Thus,
the method presented in this Letter provides valuable insight

for revealing the nature of the new phases in such experiments.
However, the model relevant to SrCu2(BO3)2 also includes
DM interactions that modify the single triplon dispersion and
can potentially change the phase diagram reported here. In ad-
dition, DM interactions reduce the spin rotational symmetry
of the model, implying that they can change the nature of the
order parameters.
We emphasize that the applicability of the method is not

restricted to the SSM considered here. The same method can
be used to detect the instabilities of other quantum paramag-
nets [76]. Especially, it is very difficult to enumerate all the
possible instabilities for highly frustrated systems. The low
energy spectrum produced by our method provides a valuable
educated guess for biased numerical approaches. Given that
the method works in the thermodynamic limit, it can also de-
tect incommensurate instabilities, which cannot be handled by
most numerical methods.
In summary, we have used an unbiased variationalmethod to

study the excitation spectrum of the SSM in the dimer phase.
Several instabilities are found next to the dimer phase cor-
responding to condensations of single-triplon or two-triplon
bound states. Two of the instabilities (antiferro spin-nematic
and plaquette) are known from previous studies and the oth-
ers (plaquette spin-nematic and stripe) are newly discovered in
this Letter. The same method can be used to compute relevant
dynamical correlation functions.
We thank S. Haravifard, B. Shastry, G. Ortiz, S. Zhang and

H. Suwa for helpful discussions. Z.W. and C.D.B. are sup-
ported by funding from the Lincoln Chair of Excellence in
Physics. This work used the Extreme Science and Engineer-
ing Discovery Environment (XSEDE) [86] through allocation
TG-DMR170029, which is supported by NSF Grant No. ACI-
1548562. This research used resources of the Compute and
Data Environment for Science (CADES) at the Oak Ridge
National Laboratory, which is supported by the Office of Sci-
ence of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

[1] B. S. Shastry and B. Sutherland, Physica (Amsterdam) 108B,
1069 (1981).

[2] S.Miyahara andK.Ueda, Journal of Physics: CondensedMatter
15, R327 (2003).

[3] S. Miyahara and K. Ueda, Phys. Rev. Lett. 82, 3701 (1999).
[4] Z. Weihong, C. J. Hamer, and J. Oitmaa, Phys. Rev. B 60, 6608

(1999).
[5] Y. Fukumoto, Journal of the Physical Society of Japan 69, 2755

(2000).
[6] C. Knetter, E. Müller-Hartmann, G. S. Uhrig, and E. Müller-

Hartmann, Journal of Physics: Condensed Matter 12, 9069
(2000).

[7] C. Knetter, A. Bühler, E. Müller-Hartmann, and G. S. Uhrig,
Phys. Rev. Lett. 85, 3958 (2000).

[8] K. Totsuka, S. Miyahara, and K. Ueda, Phys. Rev. Lett. 86, 520
(2001).

[9] M. Albrecht and F. Mila, EPL (Europhysics Letters) 34, 145

4

http://stacks.iop.org/0953-8984/15/i=9/a=201
http://stacks.iop.org/0953-8984/15/i=9/a=201
http://dx.doi.org/10.1103/PhysRevLett.82.3701
http://dx.doi.org/10.1103/PhysRevB.60.6608
http://dx.doi.org/10.1103/PhysRevB.60.6608
http://dx.doi.org/10.1143/JPSJ.69.2755
http://dx.doi.org/10.1143/JPSJ.69.2755
http://stacks.iop.org/0953-8984/12/i=42/a=312
http://stacks.iop.org/0953-8984/12/i=42/a=312
http://dx.doi.org/10.1103/PhysRevLett.85.3958
http://dx.doi.org/10.1103/PhysRevLett.86.520
http://dx.doi.org/10.1103/PhysRevLett.86.520
http://stacks.iop.org/0295-5075/34/i=2/a=145
http://stacks.iop.org/0295-5075/34/i=2/a=145


(1996).
[10] A. Koga and N. Kawakami, Phys. Rev. Lett. 84, 4461 (2000).
[11] A. Koga, Journal of the Physical Society of Japan 69, 3509

(2000).
[12] W. Zheng, J. Oitmaa, and C. J. Hamer, Phys. Rev. B 65, 014408

(2001).
[13] A. Läuchli, S. Wessel, and M. Sigrist, Phys. Rev. B 66, 014401

(2002).
[14] T. Munehisa and Y. Munehisa, Journal of the Physical Society

of Japan 72, 160 (2003).
[15] J. Lou, T. Suzuki, K. Harada, and N. Kawashima,

arXiv:1212.1999 (2012).
[16] P. Corboz and F. Mila, Phys. Rev. B 87, 115144 (2013).
[17] E. Müller-Hartmann, R. R. P. Singh, C. Knetter, and G. S.

Uhrig, Phys. Rev. Lett. 84, 1808 (2000).
[18] T. Momoi and K. Totsuka, Phys. Rev. B 61, 3231 (2000).
[19] T. Momoi and K. Totsuka, Phys. Rev. B 62, 15067 (2000).
[20] Y. Fukumoto and A. Oguchi, Journal of the Physical Society of

Japan 69, 1286 (2000).
[21] Y. Fukumoto, Journal of the Physical Society of Japan 70, 1397

(2001).
[22] G. Misguich, T. Jolicoeur, and S. M. Girvin, Phys. Rev. Lett.

87, 097203 (2001).
[23] S. Miyahara, F. Becca, and F. Mila, Phys. Rev. B 68, 024401

(2003).
[24] J. Dorier, K. P. Schmidt, and F. Mila, Phys. Rev. Lett. 101,

250402 (2008).
[25] A. Abendschein and S. Capponi, Phys. Rev. Lett. 101, 227201

(2008).
[26] L. Isaev, G. Ortiz, and J. Dukelsky, Phys. Rev. Lett. 103, 177201

(2009).
[27] M. Takigawa, T. Waki, M. Horvatić, and C. Berthier, Journal

of the Physical Society of Japan 79, 011005 (2010).
[28] M. Nemec, G. R. Foltin, and K. P. Schmidt, Phys. Rev. B 86,

174425 (2012).
[29] P. Corboz and F. Mila, Phys. Rev. Lett. 112, 147203 (2014).
[30] D. A. Schneider, K. Coester, F. Mila, and K. P. Schmidt, Phys.

Rev. B 93, 241107 (2016).
[31] M. Takigawa and F. Mila, in Introduction to Frustrated Mag-

netism, edited by C. Lacroix, P. Mendels, and F. Mila (Springer-
Verlag, Berlin Heidelberg, 2011) Chap. 10, pp. 241–267.

[32] H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov,
K. Onizuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto, and
Y. Ueda, Phys. Rev. Lett. 82, 3168 (1999).

[33] K.Ueda and S.Miyahara, Journal of Physics: CondensedMatter
11, L175 (1999).

[34] K. Onizuka, H. Kageyama, Y. Narumi, K. Kindo, Y. Ueda,
and T. Goto, Journal of the Physical Society of Japan 69, 1016
(2000).

[35] S. E. Sebastian, N. Harrison, P. Sengupta, C. D. Batista, S. Fran-
coual, E. Palm, T. Murphy, N. Marcano, H. A. Dabkowska, and
B. D. Gaulin, Proceedings of the National Academy of Sciences
105, 20157 (2008).

[36] M. Jaime, R. Daou, S. A. Crooker, F. Weickert, A. Uchida, A. E.
Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin,
Proceedings of the National Academy of Sciences 109, 12404
(2012).

[37] M. Takigawa, M. Horvatić, T. Waki, S. Krämer, C. Berthier,
F. Lévy-Bertrand, I. Sheikin, H. Kageyama, Y. Ueda, and
F. Mila, Phys. Rev. Lett. 110, 067210 (2013).

[38] Y. H. Matsuda, N. Abe, S. Takeyama, H. Kageyama, P. Corboz,
A. Honecker, S. R. Manmana, G. R. Foltin, K. P. Schmidt, and
F. Mila, Phys. Rev. Lett. 111, 137204 (2013).

[39] S. Haravifard, D. Graf, A. E. Feiguin, C. D. Batista, J. C. Lang,

D. M. Silevitch, G. Srajer, B. D. Gaulin, H. A. Dabkowska, and
T. F. Rosenbaum, Nature Communications 7, 11956 (2016).

[40] H. Tsujii, C. R. Rotundu, B. Andraka, Y. Takano, H. Kageyama,
andY.Ueda, Journal of the Physical Society of Japan 80, 043707
(2011).

[41] H. Kageyama, M. Nishi, N. Aso, K. Onizuka, T. Yosihama,
K. Nukui, K. Kodama, K. Kakurai, and Y. Ueda, Phys. Rev.
Lett. 84, 5876 (2000).

[42] O. Cépas, K. Kakurai, L. P. Regnault, T. Ziman, J. P. Boucher,
N. Aso, M. Nishi, H. Kageyama, and Y. Ueda, Phys. Rev. Lett.
87, 167205 (2001).

[43] B. D. Gaulin, S. H. Lee, S. Haravifard, J. P. Castellan, A. J.
Berlinsky, H. A. Dabkowska, Y. Qiu, and J. R. D. Copley, Phys.
Rev. Lett. 93, 267202 (2004).

[44] K. Kakurai, K. Nukui, N. Aso, M. Nishi, H. Kadowaki,
H. Kageyama, Y. Ueda, L.-P. Regnault, and O. Cépas, Progress
of Theoretical Physics Supplement 159, 22 (2005).

[45] M. E. Zayed, C. Rüegg, T. Strässle, U. Stuhr, B. Roessli, M. Ay,
J. Mesot, P. Link, E. Pomjakushina, M. Stingaciu, K. Conder,
and H. M. Rønnow, Phys. Rev. Lett. 113, 067201 (2014).

[46] P. A. McClarty, F. Krüger, T. Guidi, S. F. Parker, K. Refson,
A. W. Parker, D. Prabhakaran, and R. Coldea, Nature Physics
13, 736 (2017).

[47] M. E. Zayed, C. Rüegg, J. Larrea J., A. M. Läuchli,
C. Panagopoulos, S. S. Saxena, M. Ellerby, D. F. McMor-
row, T. Strässle, S. Klotz, G. Hamel, R. A. Sadykov, V. Pom-
jakushin, M. Boehm, M. Jiménez-Ruiz, A. Schneidewind,
E. Pomjakushina, M. Stingaciu, K. Conder, and H. M. Røn-
now, Nature Physics 13, 962 (2017).

[48] T. Rõõm, U. Nagel, E. Lippmaa, H. Kageyama, K. Onizuka, and
Y. Ueda, Phys. Rev. B 61, 14342 (2000).

[49] H. Nojiri, H. Kageyama, K. Onizuka, Y. Ueda, and M. Mo-
tokawa, Journal of the Physical Society of Japan 68, 2906 (1999).

[50] H. Nojiri, H. Kageyama, Y. Ueda, and M. Motokawa, Journal
of the Physical Society of Japan 72, 3243 (2003).

[51] P. Lemmens, M. Grove, M. Fischer, G. Güntherodt, V. N. Kotov,
H. Kageyama, K. Onizuka, and Y. Ueda, Phys. Rev. Lett. 85,
2605 (2000).

[52] K. Kodama, M. Takigawa, M. Horvatić, C. Berthier,
H. Kageyama, Y. Ueda, S. Miyahara, F. Becca, and F. Mila,
Science 298, 395 (2002).

[53] K. Kodama, S. Miyahara, M. Takigawa, M. Horvatić,
C. Berthier, F. Mila, H. Kageyama, and Y. Ueda, Journal of
Physics: Condensed Matter 17, L61 (2005).

[54] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
[55] T. Moriya, Phys. Rev. 120, 91 (1960).
[56] S. Miyahara, F. Mila, K. Kodama, M. Takigawa, M. Horvatic,

C. Berthier, H. Kageyama, and Y. Ueda, Journal of Physics:
Condensed Matter 16, S911 (2004).

[57] S. El Shawish, J. Bonča, C. D. Batista, and I. Sega, Phys. Rev.
B 71, 014413 (2005).

[58] Y. F. Cheng, O. Cépas, P. W. Leung, and T. Ziman, Phys. Rev.
B 75, 144422 (2007).

[59] J. Romhányi, K. Totsuka, and K. Penc, Phys. Rev. B 83, 024413
(2011).

[60] J. Romhányi, K. Penc, and R. Ganesh, Nature Communications
6, 6805 EP (2015).

[61] J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac, Phys.
Rev. Lett. 101, 250602 (2008).

[62] A numerical method is said to be “variational” when it satisfies
the variational principle. Other examples of unbiased variational
methods include density matrix renormalization group [87, 88]
and matrix product method [89, 90], et al..

[63] S. A. Trugman, Phys. Rev. B 37, 1597 (1988).

5

http://stacks.iop.org/0295-5075/34/i=2/a=145
http://dx.doi.org/10.1103/PhysRevLett.84.4461
http://dx.doi.org/10.1143/JPSJ.69.3509
http://dx.doi.org/10.1143/JPSJ.69.3509
http://dx.doi.org/10.1103/PhysRevB.65.014408
http://dx.doi.org/10.1103/PhysRevB.65.014408
http://dx.doi.org/10.1103/PhysRevB.66.014401
http://dx.doi.org/10.1103/PhysRevB.66.014401
http://dx.doi.org/10.1143/JPSJ.72.160
http://dx.doi.org/10.1143/JPSJ.72.160
https://arxiv.org/abs/1212.1999v1
http://dx.doi.org/10.1103/PhysRevB.87.115144
http://dx.doi.org/10.1103/PhysRevLett.84.1808
http://dx.doi.org/10.1103/PhysRevB.61.3231
http://dx.doi.org/10.1103/PhysRevB.62.15067
http://dx.doi.org/10.1143/JPSJ.69.1286
http://dx.doi.org/10.1143/JPSJ.69.1286
http://dx.doi.org/10.1143/JPSJ.70.1397
http://dx.doi.org/10.1143/JPSJ.70.1397
http://dx.doi.org/10.1103/PhysRevLett.87.097203
http://dx.doi.org/10.1103/PhysRevLett.87.097203
http://dx.doi.org/10.1103/PhysRevB.68.024401
http://dx.doi.org/10.1103/PhysRevB.68.024401
http://dx.doi.org/10.1103/PhysRevLett.101.250402
http://dx.doi.org/10.1103/PhysRevLett.101.250402
http://dx.doi.org/10.1103/PhysRevLett.101.227201
http://dx.doi.org/10.1103/PhysRevLett.101.227201
http://dx.doi.org/10.1103/PhysRevLett.103.177201
http://dx.doi.org/10.1103/PhysRevLett.103.177201
http://dx.doi.org/10.1143/JPSJ.79.011005
http://dx.doi.org/10.1143/JPSJ.79.011005
http://dx.doi.org/10.1103/PhysRevB.86.174425
http://dx.doi.org/10.1103/PhysRevB.86.174425
http://dx.doi.org/10.1103/PhysRevLett.112.147203
http://dx.doi.org/ 10.1103/PhysRevB.93.241107
http://dx.doi.org/ 10.1103/PhysRevB.93.241107
http://dx.doi.org/10.1103/PhysRevLett.82.3168
http://stacks.iop.org/0953-8984/11/i=17/a=101
http://stacks.iop.org/0953-8984/11/i=17/a=101
http://dx.doi.org/ 10.1143/JPSJ.69.1016
http://dx.doi.org/ 10.1143/JPSJ.69.1016
http://dx.doi.org/10.1073/pnas.0804320105
http://dx.doi.org/10.1073/pnas.0804320105
http://dx.doi.org/10.1073/pnas.1200743109
http://dx.doi.org/10.1073/pnas.1200743109
http://dx.doi.org/10.1103/PhysRevLett.110.067210
http://dx.doi.org/10.1103/PhysRevLett.111.137204
http://dx.doi.org/10.1038/ncomms11956
http://dx.doi.org/ 10.1143/JPSJ.80.043707
http://dx.doi.org/ 10.1143/JPSJ.80.043707
http://dx.doi.org/10.1103/PhysRevLett.84.5876
http://dx.doi.org/10.1103/PhysRevLett.84.5876
http://dx.doi.org/10.1103/PhysRevLett.87.167205
http://dx.doi.org/10.1103/PhysRevLett.87.167205
http://dx.doi.org/ 10.1103/PhysRevLett.93.267202
http://dx.doi.org/ 10.1103/PhysRevLett.93.267202
http://dx.doi.org/10.1143/PTPS.159.22
http://dx.doi.org/10.1143/PTPS.159.22
http://dx.doi.org/ 10.1103/PhysRevLett.113.067201
http://dx.doi.org/10.1038/nphys4117
http://dx.doi.org/10.1038/nphys4117
http://dx.doi.org/10.1038/nphys4190
http://dx.doi.org/ 10.1103/PhysRevB.61.14342
http://dx.doi.org/ 10.1143/JPSJ.68.2906
http://dx.doi.org/ 10.1143/JPSJ.72.3243
http://dx.doi.org/ 10.1143/JPSJ.72.3243
http://dx.doi.org/ 10.1103/PhysRevLett.85.2605
http://dx.doi.org/ 10.1103/PhysRevLett.85.2605
http://dx.doi.org/10.1126/science.1075045
http://stacks.iop.org/0953-8984/17/i=4/a=L02
http://stacks.iop.org/0953-8984/17/i=4/a=L02
http://dx.doi.org/ http://dx.doi.org/10.1016/0022-3697(58)90076-3
http://dx.doi.org/10.1103/PhysRev.120.91
http://stacks.iop.org/0953-8984/16/i=11/a=048
http://stacks.iop.org/0953-8984/16/i=11/a=048
http://dx.doi.org/10.1103/PhysRevB.71.014413
http://dx.doi.org/10.1103/PhysRevB.71.014413
http://dx.doi.org/10.1103/PhysRevB.75.144422
http://dx.doi.org/10.1103/PhysRevB.75.144422
http://dx.doi.org/10.1103/PhysRevB.83.024413
http://dx.doi.org/10.1103/PhysRevB.83.024413
http://dx.doi.org/10.1038/ncomms7805
http://dx.doi.org/10.1038/ncomms7805
http://dx.doi.org/ 10.1103/PhysRevLett.101.250602
http://dx.doi.org/ 10.1103/PhysRevLett.101.250602
http://dx.doi.org/10.1103/PhysRevB.37.1597


[64] S. A. Trugman, Phys. Rev. B 41, 892 (1990).
[65] S. El Shawish and J. Bonča, Phys. Rev. B 74, 174420 (2006).
[66] S. Haravifard, S. R. Dunsiger, S. El Shawish, B. D. Gaulin, H. A.

Dabkowska, M. T. F. Telling, T. G. Perring, and J. Bonča, Phys.
Rev. Lett. 97, 247206 (2006).

[67] C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950).
[68] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’

Guide: Solution of Large-scale Eigenvalue Problems with Im-
plicitly Restarted Arnoldi Methods (Society for Industrial and
Applied Mathematics, 1998).

[69] This means that the basis generates an invariant subspace of
the group. In addition, a fully symmetric initial basis leads to
better convergence (as a function of M) in comparison with
other choices Ref. [65].

[70] See Supplemental Material for theC4v character table, choice of
initial basis, construction of the order parameters, dominant in-
stability at zero field, convergence of dynamic structure factors,
and the description of a competing chiral state, which includes
Ref. [91].

[71] The computational cost is exponential in the linear size of the
quasi-particle. In the present case, the dimension of the truncated
Hilbert space roughly scales as D ∝ 6M ∝ 6l . For the Sztot = 0
sector, the dimension of the variational space is D = 74 for
M = 1, D = 396 for M = 2, . . ., D = 17730330 for M = 8.

[72] In principle, one can switch the order of “diagonalization” and
“point group symmetry analysis”, to reach larger M and get
better convergence. Similar tricks can be found in Ref. [92, 93].

[73] The S = 1 instability found in Ref. [7] is checked by our method
both in Sztot = 0 and Sztot = 1 sectors. The energy difference be-
tween the two sectors is negligible.

[74] A typical example is the case of attractive interaction between
the modes (particles) that become soft. Because of the attraction
(negative quartic term in a Ginzburg-Landau expansion) the
particle density changes discontinuously (first order transition)
before the single-particle excitation becomes gapless.

[75] A. V. Chubukov and O. A. Starykh, Phys. Rev. Lett. 110, 217210
(2013).

[76] E. Parker and L. Balents, Phys. Rev. B 95, 104411 (2017).
[77] Z.Wang, A. E. Feiguin, W. Zhu, O. A. Starykh, A. V. Chubukov,

and C. D. Batista, Phys. Rev. B 96, 184409 (2017).
[78] E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and

A. P. Mackenzie, Annual Review of Condensed Matter Physics
1, 153 (2010).

[79] Y. Kamiya, N. Kawashima, and C. D. Batista, Phys. Rev. B 84,
214429 (2011).

[80] R. M. Fernandes, A. V. Chubukov, J. Knolle, I. Eremin, and
J. Schmalian, Phys. Rev. B 85, 024534 (2012).

[81] R. M. Fernandes, A. V. Chubukov, and J. Schmalian, Nature
Physics 10, 97 (2014).

[82] K. Penc and A. M. Läuchli, in Introduction to Frustrated Mag-
netism, edited by C. Lacroix, P. Mendels, and F. Mila (Springer-
Verlag, Berlin Heidelberg, 2011) Chap. 13, pp. 331–362.

[83] C. Knetter and G. S. Uhrig, Phys. Rev. Lett. 92, 027204 (2004).
[84] E. R. Gagliano and C. A. Balseiro, Phys. Rev. Lett. 59, 2999

(1987).
[85] According to the fluctuation dissipation theorem, the T = 0 dy-

namic structure factor is equal to the imaginary part of the
dynamic susceptibility up to a factor of −2.

[86] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peter-
son, R. Roskies, J. R. Scott, and N. Wilkens-Diehr, Computing
in Science and Engineering 16, 62 (2014).

[87] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[88] S. R. White, Phys. Rev. B 48, 10345 (1993).
[89] S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
[90] S. Rommer and S. Östlund, Phys. Rev. B 55, 2164 (1997).
[91] J. P. Elliott and P. G. Dawber, Symmetry in Physics, Vol. 1

(Macmillan Press LTD, 1979).
[92] V. E. Sinitsyn, I. G. Bostrem, and A. S. Ovchinnikov, Journal

of Physics A: Mathematical and Theoretical 40, 645 (2007).
[93] A. M. Läuchli, in Introduction to Frustrated Magnetism, edited

by C. Lacroix, P. Mendels, and F. Mila (Springer-Verlag, Berlin
Heidelberg, 2011) Chap. 18, pp. 481–511.

6

http://dx.doi.org/10.1103/PhysRevB.41.892
http://dx.doi.org/ 10.1103/PhysRevB.74.174420
http://dx.doi.org/ 10.1103/PhysRevLett.97.247206
http://dx.doi.org/ 10.1103/PhysRevLett.97.247206
http://dx.doi.org/10.1103/PhysRevLett.110.217210
http://dx.doi.org/10.1103/PhysRevLett.110.217210
http://dx.doi.org/10.1103/PhysRevB.95.104411
http://dx.doi.org/ 10.1103/PhysRevB.96.184409
http://dx.doi.org/10.1146/annurev-conmatphys-070909-103925
http://dx.doi.org/10.1146/annurev-conmatphys-070909-103925
http://dx.doi.org/10.1103/PhysRevB.84.214429
http://dx.doi.org/10.1103/PhysRevB.84.214429
http://dx.doi.org/ 10.1103/PhysRevB.85.024534
http://dx.doi.org/10.1038/nphys2877
http://dx.doi.org/10.1038/nphys2877
http://dx.doi.org/10.1103/PhysRevLett.92.027204
http://dx.doi.org/10.1103/PhysRevLett.59.2999
http://dx.doi.org/10.1103/PhysRevLett.59.2999
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MCSE.2014.80
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MCSE.2014.80
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevLett.75.3537
http://dx.doi.org/10.1103/PhysRevB.55.2164
http://stacks.iop.org/1751-8121/40/i=4/a=006
http://stacks.iop.org/1751-8121/40/i=4/a=006

	Dynamics and Instabilities of the Shastry-Sutherland Model
	Abstract
	References


