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We investigate the interplay between charge order and superconductivity near an antiferromag-
netic quantum critical point using sign-problem-free Quantum Monte Carlo simulations. We es-
tablish that, when the electronic dispersion is particle-hole symmetric, the system has an emergent
SU(2) symmetry that implies a degeneracy between d-wave superconductivity and charge order with
d-wave form factor. Deviations from particle-hole symmetry, however, rapidly lift this degeneracy,
despite the fact that the SU(2) symmetry is preserved at low energies. As a result, we find a strong
suppression of charge order caused by the competing, leading superconducting instability. Across
the antiferromagnetic phase transition, we also observe a shift in the charge order wave-vector from
diagonal to axial. We discuss the implications of our results to the universal phase diagram of
antiferromagnetic quantum-critical metals and to the elucidation of the charge order experimentally
observed in the cuprates.

The phase diagrams of a number of strongly correlated
materials display putative quatum critical points (QCP),
in which the transition temperature of an electronically
ordered state is suppressed to zero. In systems displaying
antiferromagnetic (AFM) order, such as heavy fermions,
cuprates, and iron pnictides, unconventional supercon-
ductivity (SC) is found to emerge near the QCP [1]. Al-
though it is well established that the interactions me-
diated by fluctuations near an AFM-QCP favor a sign-
changing SC gap, the extent to which this physics de-
scribes the actual materials remains widely debated. In
this context, analytical investigations of metallic AFM-
QCP in two dimensions revealed a surprising result: the
same electronic interaction that promotes sign-changing
SC also promotes an unusual sign-changing bond charge
order (CO) [2–6]. This magnetic mechanism for CO is
sharply distinct from the usual mechanisms involving
phonons and Fermi surface nesting. Taken at face value,
this result would suggest that CO should emerge generi-
cally in the phase diagrams of AFM systems.

These theoretical results were brought to the spotlight
by the experimental observation of sign-changing bond
CO in cuprate high-Tc superconductors [7–19], spurring
many ideas on the interplay between AFM-QCP, SC, and
CO [5, 6, 20–26]. It has been proposed, for instance, that
the pseudogap physics is a manifestation of a more fun-
damental symmetry between SC and CO near an AFM-
QCP [4]. However, most of these theoretical works have
relied on certain uncontrolled approximations, which are
required for an analytical treatment of an AFM-QCP in a
metal. The fundamental question about the universality
of CO near an AFM-QCP, and the more specific ques-
tion about the relevance of this result to explain charge
order in cuprates, beg for unbiased methods to probe this

phenomenon.
In this paper, we employ the determinantal Quantum

Monte Carlo (QMC) method to address these questions.
We consider the two-band version of the spin-fermion
model, for which the QMC does not suffer from the
fermionic sign-problem [27]. The model consists of free
electrons coupled to an AFM order parameter tuned to
its QCP [28]. Analytical and sign-problem-free QMC cal-
culations have established the existence of a SC dome
surrounding the QCP [28, 29]. As for CO, an emergent
SU(2) symmetry between CO and SC was found analyt-
ically within an approximation that considers only the
vicinity of the AFM hot spots – the points on the Fermi
surface separated by the AFM wave-vector QAFM =
(π, π) [3, 4]. The resulting CO wave-vector lies along
the diagonal of the Brillouin zone, QCO = (Q0, Q0),
with

√
2Q0 being the distance between hot spots. CO

with axial wave-vectors (Q0, 0) and/or (0, Q0), which are
those experimentally observed in cuprates, has also been
proposed within the spin-fermion model [5, 30, 31]. Al-
though QMC investigations have not yet found CO, they
have focused on very narrow parameter regimes [29], or
were performed in the superconducting phase [32].

Here, we report QMC results showing the existence
of an SU(2) symmetry between CO and SC near the
AFM-QCP when the non-interacting band structure has
particle-hole symmetry. This SU(2) symmetry implies
a degeneracy between SC and CO, manifested by a
sharp enhancement of both susceptibilities as the QCP
is approached. This result demonstrates the non-trivial
mechanism of magnetically-mediated CO, and establishes
that the same interaction that promotes SC in the spin-
fermion model is also capable of promoting CO.

As the particle-hole symmetry is broken, however, we
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find that while the enhancement of the SC susceptibility
is preserved, the CO susceptibility shows a very weak en-
hancement near the QCP. Furthermore, near the onset of
SC, the CO susceptibility is even suppressed with respect
to its non-interacting value, signaling a strong competi-
tion between these two states already in the fluctuating
regime. This happens even though the SU(2) symme-
try is preserved locally at the hot spots. The fragility of
the CO-SC degeneracy implies that CO near an AFM-
QCP is not a universal phenomenon, but instead requires
a fine-tuned band structure that goes beyond just hot-
spot properties. We also investigate the wave-vector for
which the CO susceptibility is maximal. When CO and
SC are degenerate, the wave-vector is diagonal, in agree-
ment with the analytical approximations. However, once
CO and SC are no longer degenerate, the wave-vector
tends to change from diagonal to axial as the AFM phase
is approached. This is consistent with theoretical pro-
posals that axial CO is favored over the diagonal one
if the anti-nodal region of the Brillouin zone is gapped
[33, 34]. Finally, we discuss the implications of our re-
sults to materials that display putative AFM-QCPs and
their relevance to understand CO in cuprates.

The spin-fermion model is a low-energy model de-
scribing electrons interacting via the exchange of AFM
fluctuations. In its two-band version (whose physics
has been argued to be similar to the one-band version
[35]), the model is described by the following action,
S = Sψ + Sφ + Sλ, defined on a two-dimensional square
lattice:

Sψ =

∫
τ,rr′

∑
i=c,d

[(∂τ − µ) δrr′ − ti,rr′ ]ψ†i,rαψi,r′α

Sφ =
1

2

∫
τ,r

[
1

v2s
(∂τφ)

2
+ (∇φ)

2
+ r0φ

2 +
u

2

(
φ2
)2]

Sλ = λ

∫
τ,r

eiQAFM·rφ ·
(
ψ†c,rασαβψd,rβ + h.c.

)
(1)

Here,
∫
τ,r

is shorthand for
∫
dτ
∑

r, τ ∈ [0, β) is the
imaginary time, and β = 1/T is the inverse temperature.
The action Sψ describes the fermionic degrees of freedom,
with the operator ψi,rα annihilating an electron of spin α
at site r and band i. Summation over α, β is implied. The
two electron bands are labeled c and d. The band dis-
persion is parametrized by the chemical potential µ and
the hopping amplitudes ti,rr′ . Here, we consider only
nearest-neighbor hopping and set tc,x = td,y ≡ tx and
tc,y = td,x ≡ ty to enforce the system to remain invari-
ant under a 90◦ rotation followed by a c ↔ d exchange.
The action Sφ describes the spin degrees of freedom, with
the bosonic field φ denoting the AFM order parameter
with ordering wave-vector QAFM = (π, π), and σ denot-
ing Pauli matrices. The lattice derivative (∇φ)2 is short
for

∑
δ=x̂,ŷ(φr − φr+δ)2. The parameter r0 tunes the

AFM transition, whereas vs and u describe the stiffness
of temporal and amplitude fluctuations respectively. To
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Figure 1. (a) Schematic Fermi surface of the spin-fermion
model with two bands (c, dashed line, and d, solid line). Hot
spots are marked by solid symbols. Two pairs of hot spots
(c1, d1) and (c2, d2) are highlighted to illustrate the relation-
ship between the AFM wave-vector QAFM and the CO wave-
vector QCO. The band dispersions used in our QMC calcu-
lations are shown in (b) (particle-hole symmetric dispersion,
µ = 0, with ty = tx/2) and (c) (particle-hole asymmetric dis-
persion, µ/tx = −

√
3, with ty = 0). Changing µ tunes the

CO wave-vector QCO = (Q0, Q0) since Q0 = 2arccos −µ
2tx

.

save computational time, we follow previous works and
consider easy-plane antiferromagnetism, i.e φ = (φx, φy)
[29, 35, 36]. The action Sλ couples spins and fermions via
the parameter λ. The two-band structure of the model
ensures the absence of the sign problem in our simula-
tions [27].

The fermionic, magnetic, and superconducting proper-
ties of this model have been thoroughly studied recently,
revealing a SC dome surrounding the QCP [29, 36]. In
particular, the SC order parameter ∆ was found to have
a “d-wave” symmetry, i.e. to change its sign between
the two bands: ∆ =

∫
τ,r
iσyαβ (ψc,rαψc,rβ − ψd,rαψd,rβ) .

The CO order parameter ρ investigated here also has
opposite signs in the two-bands (and is thus analogous
to the d-wave bond CO in the one-band version of the
model): ρ =

∫
τ,r
eiQCO·rσ0

αβ

(
ψ†c,rαψc,rα − ψ†d,rαψd,rβ

)
,

where QCO is the CO wave-vector.
Analytical studies found a symmetry relating the

SC and CO order parameters under an approxima-
tion that focuses on the vicinity of the hot spots [3–
5, 37]. In the two-band version of the model, each
hot spot of a given pair (ci, di) is located on a differ-
ent band, as shown in Fig. 1(a). The hot-spots model
with linearized dispersions has an emergent SU(2) sym-
metry that rotates the SC order parameter, ∆h.s. =
iσyαβ (ψc1,αψc2,β − ψd1,αψd2,β), onto the CO order pa-
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rameter, ρh.s. = σ0
αβ

(
ψ†c1,αψc2,β − ψ

†
d1,α

ψd2,β

)
. This CO

has a diagonal wave-vector QCO ≡ (Q0, Q0) which sep-
arates two hot spots belonging to different pairs but to
the same band (see Fig. 1(a)). Our goal here is to inves-
tigate: (i) to what extent does this symmetry play a role
in the vicinity of an AFM-QCP, and (ii) more broadly,
is CO a generic feature near such a QCP. To this end,
we perform a systematic investigation of the SC and CO
susceptibilities in the two-band spin-fermion model.

We choose as our starting point the parameters for
which the approximate SU(2) symmetry is promoted to
an exact lattice symmetry. This corresponds to the
case where the c and d bands are particle-hole sym-
metric, i.e. µ = 0. This allows us to systematically
study the effect of breaking the particle-hole symme-
try at the lattice level. For µ = 0, the electronic ac-
tion for a given AFM field configuration – correspond-
ing to the Sψ and Sλ terms of the action in Eq. (1)
– is invariant under a rotation in particle-hole space,
ψirα → eiQAFM·r

(
iσyαβ

)
ψ†i,rβ . This invariance can be

seen by constructing a four-dimensional spinor that com-
bines rotated and non-rotated operators at each band,

Ψi,r ≡
(
ψi,r↑, ψi,r↓, e

iQAFM·rψ†i,r↓, −eiQAFM·rψ†i,r↑

)T
.

In this representation, when µ = 0, the Hamil-
tonian commutes with all all SU(2) generators τ
in particle-hole space. Importantly, the SC and
CO order parameters form a three-component vector
Φ ≡ (Re∆, Im∆, ρ), and couples to the electrons as∑

r e
iQAFM·rΦ · (σ0 ⊗ τ )

(
Ψ†c,rΨc,r −Ψ†d,rΨd,r

)
. Note

that QCO = QAFM, enforcing ρ to be real. As a re-
sult, an enhancement of the SC susceptibility implies an
equally strong enhancement in the CO channel. This
symmetry is analogous to the that observed in the half-
filled negative-U Hubbard model [38]. Here, however,
both the SC and CO have a d-wave symmetry.

To demonstrate the existence of this SU(2) symmetry
for µ = 0, we perform QMC simulations on a square lat-
tice of size L = 12. All energies are expressed in terms of
the hopping tx ≡ t and the parameters are set to vs = 2t,
u = t−1, λ2 = 4t, and ty = t/2, resulting in the Fermi
surface shown in Fig. 1(b) (Other particle-hole sym-
metric dispersions are presented in the Supplementary
Material). Fig. 2(a) shows the SC susceptibility χSC,
the CO susceptibility χdiag

CO with diagonal wave-vector
QCO = (Q0, Q0), where Q0 = π, and the CO susceptibil-
ity χaxial

CO with axial wave-vector QCO = (Q0, 0) / (0, Q0)
as a function of the distance to the AFM-QCP for βt =
12. The position rc of the AFM-QCP is determined via
the AFM susceptibility [35]. The degeneracy between
diagonal CO and SC is evident, as well as the enhance-
ment of both susceptibilities at the AFM-QCP. The fact
that χSC = 2χdiag

CO is because the complex SC order pa-
rameter has two components whereas the real CO order
parameter has one. In contrast, the axial CO susceptibil-
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Figure 2. SC susceptibility χSC (circles) and CO suscepti-
bilities for diagonal wave-vector QCO = (Q0, Q0), χdiag

CO (tri-
angles), and axial wave-vector QCO = (Q0, 0) / (0, Q0), χaxial

CO

(inverted triangles), as function of: (a) the distance r0− rc to
the AFM-QCP (fixed temperature βt = 12); and (b) temper-
ature T/t (fixed r0 = rc at the AFM-QCP). The particle-hole
symmetric dispersion used here is that of Fig. 1(b).
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Figure 3. (a) SC (circles) and diagonal CO (triangles) sus-
ceptibilities, normalized by their non-interacting values, as a
function of the distance to the QCP r0 − rc and for a fixed
temperature βt = 10. The dispersion is represented in Fig.
1(c), with different values of the wave-vector Q0 (shown in
the inset). Panel (b) shows the temperature dependence of
the inverse susceptibilities at the AFM-QCP (r0 = rc) for
µ/t = −

√
2 (Q0 = π/2).

ity remains small and nearly unaffected by the proximity
to the QCP. Fig. 2(b), which shows the behavior at the
QCP, confirms that the degeneracy is present at all tem-
peratures.

We now proceed to investigate whether there is a rem-
nant near-degeneracy between SC and CO when particle-
hole symmetry is broken (µ 6= 0). In this case, al-
though there is no lattice SU(2) symmetry, an approx-
imate SU(2) symmetry of the low energy theory near the
hot spots is preserved [37][39]. To favor the CO state, we
consider one-dimensional dispersions (ty = 0), as shown
in Fig. 1(c), although the results are similar for finite ty
(see Supplementary Material). To be able to assess the
relevant CO wave-vectors QCO = (Q0, Q0) in the finite-
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Figure 4. Panels (a)-(c) show the momentum dependence of the CO susceptibility χCO (q) in the paramagnetic phase r0 = 2.2rc
(a), at the QCP (b), and in the AFM phase r0 = 0.44rc (c). The dispersion is represented in Fig. 1(c) with µ/t = −

√
2. (d)

Ratio η of the maximum values of χCO (q) along the diagonal direction, q = (q, q), and along the axial direction, q = (q, 0), for
different inverse temperatures β (inset), as function of the distance to the QCP at r0 = rc. The dashed line at η = 1 marks the
location where the maximum of the CO susceptibility changes between diagonal and axial directions. The results are obtained
for βt = 14 and L = 16.

size QMC simulations, we choose µ values that yield com-
mensurate Q0 ≡ 2 arccos −µ2t = 2πn

L , with n = 2, 3, 4, 5.

Figure 3(a) displays the behavior of χSC and χdiag
CO ,

normalized by their non-interacting (λ = 0) value, as a
function of the distance to the QCP for different values
of µ. While the sharp enhancement of χSC at r0 = rc is
preserved, the enhancement of χdiag

CO is small for r0 > rc.
This enhancement of χdiag

CO is larger the closer µ is to
zero, i.e. the closer the global lattice SU(2) symmetry
is to be restored. The CO-SC degeneracy observed for
µ = 0 is absent, with SC clearly winning over CO. The
competition between the two orders is highlighted in Fig.
3(b), where the T dependences of 1/χSC and 1/χdiag

CO

are plotted at the QCP, r0 = rc. Interestingly, right
above the Berezinskii-Kosterlitz-Thouless superconduct-
ing transition temperature Tc (extracted from the super-
fluid density, see Ref. [35]), χdiag

CO reverses its trend and
starts to decrease upon lowering the temperature. This
provides evidence that the competition between SC and
CO takes place already in the fluctuating regime.

Another important result from our QMC simulations
is that, when the AFM hot spots are near the antin-
odal region of the Brillouin zone (i.e., (π, 0) / (0, π)), the
CO wave-vector tends to shift from diagonal to axial in-
side the AFM phase. To illustrate this, in Fig. 4 we plot
χCO (q) for the system with µ/t = −

√
2 (Q0 = π/2). Re-

sults for other fillings are discussed in the Supplementary
Material. The tendency of shifting QCO from diagonal
(paramagnetic phase) to axial (AFM phase) is evident.
To quantify this behavior, we plot in Fig. 4(d) the ra-
tio between the maxima of χCO along the diagonal and
axial directions as function of r0 for βt = 14. The maxi-
mum is along the diagonal direction in the paramagnetic
phase. Inside the AFM phase, however, the maximum
quickly shifts to the axial direction. This effect is consis-
tent with theoretical proposals that axial CO is favored

over diagonal CO if the antinodal regions of the Brilliouin
zone are gapped either by AFM order discussed here or
by a more exotic pseudogap state [33, 34].

In summary, we showed that the spin-fermion model
with particle-hole symmetric bands has an exact SU(2)
symmetry that relates d-wave SC and d-wave CO. The
breaking of this symmetry at the lattice level strongly
suppresses the CO susceptibility, even though it remains
a low-energy symmetry near the hot spots. Compared
with previous QMC investigations of the spin-fermion
model, which showed that the SC instability is governed
by the hot spots [35], our results indicate that the CO
instability is instead governed by the full electronic dis-
persion. Such an asymmetry between CO and SC implies
that CO is not a universal phenomenon associated with
AFM quantum criticality, in contrast to SC. The fragility
of the SC-CO symmetry can be understood in renor-
malization group language. At the fixed point with a
high emergent symmetry, small symmetry-breaking per-
turbations are strongly relevant [40], and quickly drive
the system away from the high symmetry regime. The
high symmetry may yet emerge at very low energies in
an ideal, weak-coupling critical point. At a finite value
of the coupling constant, however, interactions between
degrees of freedom at different energy scales leads to a
loss of the emergent symmetry. The SC channel wins be-
cause it is enhanced by both high and low energy degrees
of freedom, in contrast to density-wave like instabilities.

The applicability of these results to specific materi-
als – and particularly the cuprates – remains an open
question. On the one hand, the CO observed in most
cuprates only acquires a substantially long correlation
length once SC is fully suppressed, and CO fluctuations
are found to be suppressed by the onset of SC [8, 18, 19].
Furthermore, in the pseudogap state where CO is ex-
perimentally observed, the CO wave-vector is axial, and
not diagonal. All these observations seem at least qual-
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itatively consistent with our results for systems without
particle-hole symmetric band dispersions. On the other
hand, in hole-doped cuprates, AFM fluctuations become
weaker as the system approaches optimal doping and CO
is observed. The fact that CO is strongest near a specific
doping close to 1/8, where AFM fluctuations are not par-
ticularly enhanced, suggests that lattice commensuration
effects, rather than AFM criticality, may play an impor-
tant role in these systems.
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