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Time-domain techniques have shown the potential of photo-manipulating existing orders and
inducing new states of matter in strongly correlated materials. Using time-resolved exact
diagonalization, we perform numerical studies of pump dynamics in a Mott-Peierls system with
competing charge and spin density waves. A light-enhanced d-wave superconductivity is observed
when the system resides near a quantum phase boundary. By examining the evolution of spin,
charge and superconducting susceptibilities, we show that a sub-dominant state in equilibrium can
be stabilized by photomanipulating charge order to allow superconductivity to appear and dominate.
This work provides an interpretation of light-induced superconductivity from the perspective of order
competition, and offers a promising approach for designing novel emergent states out of equilibrium.

PACS numbers: 87.15.ht, 74.20.Mn, 71.45.Lr

With the development of pump-probe instruments in
recent years, time-domain techniques have been widely
applied to the study of complex quantum materials[1, 2].
The rich information revealed in the extra time dimen-
sion holds potential to characterize ordered states[3–8],
disentangle different variables[9–11], and trace pathways
of electronic evolution from designed perturbations[12–
14]. On the one hand, the electronic or structural
properties can be transiently engineered by the pump
field, which could potentially stabilize new states of
matter or drive incipient phase transitions[15–19]. On
the other hand, the development of these phenomena and
their subsequent relaxation further reveal information
about the underlying physics[20–24]. Along with the
achievements of ultrafast experiments, the development
of nonequilibrium photomanipulation in microscopic the-
ories is in demand.

In particular, nonequilibrium studies of strongly cor-
related materials are complicated due to intertwined
orders. In such systems, the microscopic mechanisms of
intriguing emergent phenomena such as unconventional
superconductivity remain elusive[25–27]. Therefore, ul-
trafast techniques could be helpful because of their
capability to shift the balance between different emergent
phases and create new states of matter inaccessible in
equilibrium[28–32]. Efforts have been made to enhance
superconductivity[16, 19, 33–35], while attempts towards
an understanding have been made via phenomenological
and mean-field theories[36, 37]. A microscopic under-
standing, however, remains open due to the lack of
adequate treatment of the strongly coupled degrees of
freedom in correlated electron systems. It is significant
for the prediction and design of superconducting states

in complex materials to unravel whether the enhanced
superconductivity is a new state born from an underlying
instability or a result of a photomanipulation of balanced
phases.
Previous theoretical studies in both equilibrium

and time-domain have shown the intimate relation-
ship between spin, charge and lattice variables with
superconductivity[25–27, 37–42]. For example, s-wave
superconductivity can be induced by an interaction
quench in a strongly correlated system[43]. Therefore,
the emergence of d-wave superconductivity in correlated
electrons may naturally lie in the manipulation of differ-
ent intertwined variables. For this purpose, we perform
numerical studies of a pumped Mott-Peierls system with
gapped charge-density-wave (CDW) and spin-density-
wave (SDW) orders using time-resolved exact diago-
nalization. During the pump, we find photoenhanced
superconductivity in the vicinity of the phase boundary
from the Peierls state, while there is no apparent change
of the superconducting order parameter deep in either the
gapped Peierls or Mott phases. The photoenhanced rem-
nant pairing instabilities increase and become divergent
near the phase boundary. Through the comparison with
d-wave projected spin fluctuations, we attribute such a
substantial enhancement to photoinduced spin excita-
tions, in contrast to quasiparticle weight and bandwidth
engineering. This work thereby provides a novel perspec-
tive on creating nonequilibrium emergent phenomena,
particularly superconductivity, through the control of the
interactions near a quantum phase transition.
In order to simulate the competition between

Peierls/CDW and Mott/SDW phases, we adopted a two-
dimensional Peierls-Hubbard model, which describes the
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FIG. 1: (a) Schematics of SDW and CDW insulating states.
(b) Average phonon occupancy 〈nph〉 at various λ and u.
The dashed lines indicate the phase boundaries in the anti-
adiabatic limit where ueff =0, while the solid line tracks the
numerical boundary where the translational symmetry breaks
and the ground state changes from doubly-degenerate (Peierls
phase) to non-degenerate. The red and orange circles denote
the parameters used in Fig. 2 and the boundary-crossing
dotted bar shows the parameter space traversed in Fig. 3.

lattice degrees of freedom by a uniform dimerization. The
model Hamiltonian reads H = He-e +He-ph[11, 44, 45]:

He-e = −th
∑

〈i,j〉,σ

(c†iσcjσ + h.c.) + U
∑

i

ni↑ni↓

He-ph = − g√
N

(b† + b)
∑

i,σ

(−1)ix+iyniσ +Ω b†b (1)

where th is the nearest-neighbor hopping integral, c†iσ
(ciσ) and niσ are the electron creation (annihilation)
and number operators at site i of spin σ, U is the
on-site Coulomb repulsion, and b† (b) and Ω are the
phonon creation (annihilation) operator and frequency,
respectively. The dimensionless electron-electron (e-
e) and electron-phonon (e-ph) coupling strengths are
defined as u = U/th and λ = g2/thΩ, respectively. The
phonon frequency is set to Ω= th as in Ref. [11, 46].
At half-filling, this model describes the competition

of CDW and SDW states at the nesting momentum
q = (π, π), which is consistent with the Hubbard-
Holstein model: the presence of both e-e and e-ph

effects leads to this competition and a metallic region
between the ordered phases[46–52]. Fig. 1(b) shows
the equilibrium phase diagram as a function of u and
λ in terms of phonon occupancy 〈nph〉. A Peierls
phase with leading checkerboard CDW order and large
distortion (or phonon numbers) exists on the u ≪ 2λ
side, while a Mott phase with leading SDW order lives
on the other side. In contrast to the one-dimensional
situation[11, 46, 47, 51, 52], the intermediate metallic
phase is relatively narrow at zero temperature due to the
ordered SDW. The calculations are performed on square
clusters of N=8 sites with periodic boundary conditions
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FIG. 2: Evolution of (a) d-wave pairing correlation 〈∆†
d
∆d〉

and (b) magnetization 〈m2
z〉 (in log scale) during and after the

pump, for systems deep [u = 3.9, λ = 4, bottom] and shallow
[u = 7.8, λ = 4, top] in the Peierls phase, respectively. The
darkness of curves denotes the pump strength varying from
A0 = 0.1 to 0.8.

and maximum phonon occupation M = 127, which is
sufficient for convergence within the range of our phase
diagram [see Fig. 1(b)]. We use exact diagonalization
with the parallel Arnoldi method[53] to determine the
equilibrium ground state wavefunction

∣

∣ψ(t = −∞)
〉

.
In the presence of an external field, a time-dependent

Hamiltonian H(t) can be written with the Peierls sub-

stitution c†iσcjσ → eiA(t)·(rj−ri)c†iσcjσ. Here we use an
oscillatory gaussian vector potential in the temporal
gauge to simulate a pulsed laser pump [see Fig. 2]

A(t) = A0e
−(t−t0)

2/2σ2

t cos[ω0(t− t0)]epol. (2)

As the nesting momentum for both phases is (π, π), we
select diagonal polarization epol = (ex + ey)/

√
2. We

use the Krylov subspace technique[54–58] to evaluate the
time evolution of a state |ψ(t+ δt)〉 = e−iH(t)δt|ψ(t)〉.
Throughout this work, the pump frequency is set to be



3

-10-1 10-1±10-3
2×

0 2 4 0
2

8

u

λ

1 3

4
60.2

0.4

0.6

A
0

0

(c) 

3.5 4.5 7

8.5

Peierls u

λ

A
0

3.5 4.5 7

u

λ 4.5 7
Peierls u

A
0

(a) δ<∆
d

†∆
d

>

43.5 4.5

λ

7.57 8.5

u
8

0.4

0.8
A

0

0

43.5 4.5
λ

7.57 8.5
u

0.4

0.8

A
0

0
8

(b) δΛ
d

FIG. 3: Change of (a) pairing correlation and (b) d-wave projected spin fluctuations evaluated in the post-pump state (t = 10t−1
h

)
for various pump strength A0 and parameter sets near the phase boundary along two parameters. The cut positions are denoted
by the color plains in the inset. (c) The change of pairing correlation with fixed pump strengths, over a wider range of interaction
parameter sets. The colormaps are plotted in logarithmic scale. The dashed lines indicate the phase boundary.

ω0 = 4.4th, which is close to the Mott gap size ∼ U−4th.
Further discussion on the impact of the pump frequency
is given in the Supplementary Materials[59].

The Peierls-Hubbard model correctly captures the
competition and quantum phase transition of SDW
and CDW states. Its nonequilibrium dynamics has
been shown to reveal the critical softening of bosonic
excitations, reflecting the intertwined nature of the
fermion-boson coupling[11]. This further motivates the
present work on a two-dimensional geometry, inves-
tigating d-wave superconductivity. We monitor the
time-dependent d-wave pairing correlation 〈∆†

d∆d〉 with
various pump intensities[60] [see Fig. 2(a)], where ∆d =
∑

k γd(k)ck↑ck↓ and γd(k) = cos kx − cos ky. A phase
average of the pump pulse is adopted to filter out the
phase-locked fast oscillations ∼ U , which are not relevant
here. Deep in the Peierls phase (u ≪ uc) the pairing
correlation gradually increases with pump intensity, but
the dynamics are restricted within a minimal amplitude
due to the dominant Peierls phase. Considering that
the effective interaction remains unchanged in the BCS
picture, this small enhancement can be attributed to
pump-enhancement of quasiparticle weights in a previ-
ously gapped insulator.

However, near the phase boundary, where both CDW
and SDW orders are well balanced (u . uc), the d-wave
pairing displays a substantial enhancement – by three

orders of magnitude. Since the equilibrium phase on the
Peierls side has small superconducting correlations, this
relatively strong enhancement is related to the ground
state’s proximity to the Mott phase transition boundary.
A simulation of the magnetization 〈m2

z〉 reveals this
potential connection [see Fig. 2(b)]: unlike the dynamics
deep in the Peierls phase with no surviving magnetism,
the pumped 〈m2

z〉 displays considerable enhancement
near the phase boundary, which persists following the
pump. The increased d-wave pairing instability is thus
connected to the pump-induced change of the effective
spin interactions.

The rise of magnetism and superconductivity can be
linked naturally to the increase of the fluctuations and
associated bosonic excitations near the critical point[11].
To establish this connection, we fine tune parameters
near the phase boundary and examine the time evolution
of the post-pump 〈∆†

d∆d〉 for u ≃ uc [see Fig. 3(a)],
tracking the susceptibilities along both the u and λ
directions near the phase boundary. The Peierls side
displays a “critical fan” of pairing correlations, which are
further enhanced at larger pump fluences near the critical
point. However, the pairing instability is suppressed in
the Mott phase. This implies that spin fluctuations play
a dominant role in the development of pairing out of
equilibrium.

To demonstrate the influence of spin excitations on
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the pairing correlations, we further examine the d-
wave projected spin fluctuations Λd. Such a projected
fluctuation is claimed to mediate d-wave superconduc-
tivity as a pairing glue, in an RPA-like scenario[61–63].
The nonequilibrium Λd(t) can be obtained through the
measure of the spin response functions [see Ref. 64 and
the Supplementary Materials [59] for calculation details].
As shown in Fig. 3(b), approaching the Peierls phase
boundary or increasing the pump field will enhance the
post-pump Λd, although it is suppressed on the Mott
side of the phase boundary. The agreement between the
remnant Λd and the pairing correlations reflects that spin
fluctuations contribute as a pairing glue in the d-wave
channel. Therefore, the photoenhancement of d-wave
superconductivity near the quantum phase transition is a
result of competing interactions: the charge ordered state
measured by the charge structure factor N(π, π) [not
shown here] is reduced by the pump field, releasing spin
fluctuations to pair electrons with a d-wave symmetry.

As the charge order proves more vulnerable to an
external pump in the weak coupling limit[11], other insta-
bilities such as spin and superconductivity are expected
to emerge. Fig. 3(c) shows an extended phase diagram
down to the weak coupling region, with fixed pump
strengths A0. From the horizontal perspective, such a
“critical fan” increasingly opens up with the decrease of
interaction parameters u and λ. The region where pairing
correlations could be enhanced can be 2-3 times wider
than the strong-coupling regime with u ∼ 8. However,
the maximum enhancement that can be achieved by a
given pump remains roughly the same. The fact that
〈∆†

d∆d〉 contour follows the phase boundary, rather than
the contour of CDW orders in Fig. 1(b), reflects that it is
influenced more by the buildup of spin fluctuations than
by simply melting the CDW order. In contrast to the tiny
enhancement deep in the phase, the photomanipulation
of effective interactions instead of quasiparticle weight
dominates near the critical point.

In contrast to the Peierls phase where the maximal
enhancement appears near the middle or end of the
pump, the nonequilibrium pairing correlation 〈∆†

d∆d〉
is enhanced only at the very beginning of the pump in
the Mott phase. Similar to Floquet engineered virtual
states and bandwidths, such a transient enhancement
does not persist at longer times when the interaction
balance already has been perturbed by the external
field. It is known that both the quasiparticle weight
and the interaction strength can affect superconductivity.
Thus to understand the differences in dynamics from
the Mott and Peierls sides, we evaluate the density of
states (DOS) during the pump-probe process [see the
Supplementary Material [59] for calculation details]. As
shown in Fig. 4(a), the DOS is gapped in the Peierls
phase before the pump, and becomes progressively filled
near the Fermi level after the pump. Due to the existence
of different instabilities near the phase boundary, these
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FIG. 4: (a) Evolution of DOS during the pump. The shaded
regions denote occupied states. (b,c) Comparison of post-
pump (t = 10 t−1

h
) pairing correlation (solid blue circles),

spin fluctuations (red squares) and quasiparticle weight (green
triangles) as a function of pump strength from (b) Peierls
phase (u = 7.8) and (c) Mott phase (u = 8). The quasiparticle
weights are plotted against the right axis.

filled weights form another gap-like structure, which as a
many-body effect forbids the recovery of the manipulated
spin fluctuations. This explains why the transiently
photoinduced Λd could survive after the pump and
constantly give rise to the pairing correlation, in contrast
to the u≪ uc case in Fig. 2.
To investigate the impact of quasiparticle weight,

Figs. 4(b) and (c) extract the DOS(0) at various pump

strengths, compared with 〈∆†
d∆d〉 and Λd. Starting from

either insulating phases, the pump field always enhances
the weights, which could potentially lead to enhanced
pairing. Unlike the Peierls phase, the enhancement of
DOS(0) in the Mott phase is simultaneously accompanied
by the overall drop in spin excitations. These two
effects cancel out and the charge fluctuations as well as
phonons soon develop, which suppresses remnant d-wave
superconductivity.
Therefore, the control of spin and charge excitations

plays a dominant role in enhancing d-wave superconduc-
tivity, which is only possible while pumping from the
Peierls phase where spin excitations are initially frozen.
In contrast to the tiny enhancement due to purely kinetic
or quasiparticle reasons [Fig. 2(a)], the fluctuations near
a quantum phase transition are necessary to obtain
considerable enhancement of superconductivity. Note
here we discuss only the incipient pairing instability
emergent from the competing phases, without implying
whether the superconducting “order” is dominant in the
thermodynamic limit. Although the equilibrium Mott
phase displays larger absolute pairing correlation com-
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pared to the pumped Peierls phase, the former is known
dominant by an SDW order instead of superconductivity.
To summarize, we have examined the nonequilibrium

dynamics of a Mott-Peierls system under a pulsed pump
and found that the d-wave pairing correlations can be
enhanced considerably when the original system lies in
the vicinity of the phase boundary between CDW and
SDW orders. By comparing the dynamical change of
pairing susceptibilities with different interactions and flu-
ences, we attribute this enhancement to the manipulation
of competing phases and effective interactions near a
critical point. More specifically, the enhanced spin fluc-
tuations projected in a d-symmetry are consistent with
the underlying pairing mechanism. The increase of spin
fluctuations provides a pairing glue for superconductivity,
which together with photoinduced quasiparticle weight,
drives incipient d-wave superconductivity. The result
indicates that the observed nonequilibrium enhancement
of orders or instabilities may originate more from the
effective interactions than kinetic or quasiparticle rea-
sons. This study thereby provides an approach to design
a photoenhanced state near the critical region where
various orders become intimately balanced.
This work was supported at SLAC and Stanford
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AC02-05CH11231.
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