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3Departament de F́ısica de la Matèria Condensada. Facultat de F́ısica.

Universitat de Barcelona. Mart́ı i Franquès, 1. 08028 Barcelona, Catalonia.
4CONACYT, Instituto Tecnológico de Oaxaca, Av. Ing. Vı́ctor Bravo Ahuja 125, Oaxaca de Juárez 68030, México
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The total energy of acoustic emission (AE) events in externally stressed materials diverges when
approaching macroscopic failure. Numerical and conceptual models explain this accelerated seismic
release (ASR) as the approach to a critical point that coincides with ultimate failure. Here, we report
ASR during soft uniaxial compression of three silica-based (SiO2) nanoporous materials. Instead of
a singular critical point, the distribution of AE energies is stationary and variations in the activity
rate are sufficient to explain the presence of multiple periods of ASR leading to distinct brittle
failure events. We propose that critical failure is suppressed in the AE statistics by mechanisms of
transient hardening. Some of the critical exponents estimated from the experiments are compatible
with mean field models, while others are still open to interpretation in terms of the solution of
frictional and fracture avalanche models.

PACS numbers: 64.60.av, 89.75.Da, 89.75.Fb, 81.70.Cv

The mechanical deformation and failure of materials
is a well documented case of avalanche dynamics [1–33].
The energy of mechanical avalanches is partially released
in elastic waves that can be detected by means of acous-
tic emission (AE) measurement [34]. Several studies sug-
gested the presence of a phase transition associated with
the ultimate failure point [18–22, 35] which could, in the-
ory, be monitored and forecast by means of the statistical
analysis of the preceding AE activity [6, 36–38] and be
used for hazard assessment. AE signals recorded during
mechanical tests usually display a scale-free distribution
of energies (E) close to a power-law: D(E)dE ∼ E−εdE
with exponent 1 . ε . 2.5. Three different relationships
are often reported between this scale-free phenomenon
and the proximity to failure:

(i) The exponent ε in AE can decrease before fail-
ure [39–44].

(ii) The rate of energy released over time in AE exper-
iments [45–49] diverges as a power-law with an exponent
m with respect to the time of failure tc:

dE/dt(t) ∝ (tc − t)−m, (1)

a phenomenon called accelerated seismic release (ASR)
[50].

(iii) The characteristic scales of the avalanches depend
on the distance to failure [25–28]. This later observa-
tion supports the well established idea that failure occurs
due to the divergence of correlation lengths at a critical
point [15, 20, 51, 52]. This so-called critical failure hy-
pothesis predicts a generalized homogeneous distribution

of event energies:

D(E; f)dE = E−εD(Efβ)dE = fβεD̃(Efβ)dE, (2)

where D(x) and D̃(x) are scaling functions, f ≡ 1− t/tc
the time to failure and β a characteristic exponent of the
model.
While the exponent decrease (i) is currently not un-

derstood from a model perspective, ASR (ii) and critical
failure (iii) are well reproduced by most micromechani-
cal models [15–17, 37, 51]. Since all statistical n-moments
diverge at failure as 〈En〉 ∼ f (ε−1−n)β and the activity
rate (dN/dt) is constant in most micromechanical mod-
els, ASR (ii) is a natural outcome of critical failure:

dE/dt(f) = 〈E〉(f) dN/dt(f) ∼ f (ε−2)β . (3)

Although ASR is assumed as a signature of critical-
ity [51, 53], its connection with Eq. (2) is rarely tested
with AE. Here, we analyze the AE during the approach to
failure of nanoporous materials under soft uniaxial com-
pression. We prove that ASR (ii) can appear in absence
of progressive exponent changes (i) or critical failure (iii).
We estimate the experimental exponents m (Eq. (1)), ε
(Eq. (2)) and γ relating the characteristic E of an event
with its duration T through the conditional average:

〈E|T 〉 ∝ T γ , (4)

and interpret them in terms of the mean field solutions
of fracture and frictional avalanches.
We limit our analysis to the three silica (SiO2) based

materials studied in Ref. [5]: natural red sandstone (SR2,
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area height driving rate Th N

A (mm2) h (mm) dP/dt (kPa/s) (dB)

Vycor (V32) 17.0 5.65 5.7 23 34138

Gelsil (G26) 46.7 6.2 0.7 26 5412

Sands. (SR2) 17.0 4.3 2.4 23 27271

TABLE I. Sample details: crossectional area A; height h;
compression rate dP/dt; number N of recorded signals above
threshold Th.
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FIG. 1. (color online) Histograms (color-coded) of AE events
in the duration-energy (DAE ,EAE) space. Blue dots: condi-
tional averages 〈DAE〉(EAE); green triangles: numerical so-
lutions of EAE(DAE) consistent with Eq. (4) (see main text
for details) with γ = 3.0(4) for V32, γ = 3.4(4) for G26 and
γ = 3.2(4) for SR2.

Φ = 17% porosity) extracted from Arran Isle (UK) and
two artificial porous silica glasses Gelsil (Gel26, Φ =
36%) and Vycor (V32, Φ = 40%). Experimental details
are found in Ref. [5] and summarized in Table I. Samples
are compressed without lateral confinement at a steady
quasistatically slow loading rate dP/dt ∼ 1 kPa/s, equiv-
alent to a strain rate (dǫ/dt) ∼ 10−5s−1 during quasielas-
tic deformation. The sample height (h) is measured over
time with a laser extensometer and the AE is recorded by
a piezoelectric transducer attached to the upper compres-
sion plate. Individual AE events are identified by thresh-
olding the acoustic signal V (t), defining the hitting time
tAE and duration DAE of each AE event. The AE energy

of each event is computed as EAE ∝
∫ tAE+DAE

tAE

|V (t)|2 dt.

Fig. 1 shows the relations between AE energy (EAE)
and duration (DAE) in a density map, and the condi-
tional averages 〈DAE〉(EAE). The experimental data is
compared to a non-stochastic model considering a scale-
free avalanche profile (Eq. (4)) and the best value of γ
found by inspection (see supplementary material [URL-
will-be-inserted-by-publisher ]). Within error bars (±0.4),
all values are compatible with γ = 3, as predicted by
mean field (MF) models [54, 55]. The density clouds fill
narrow stripes around the conditional average values as
expected by Eq. (4).

The activity rate — the number of AE events per time
unit — is non-stationary, as also reported in Refs. [4–
9]. Fig. 2.a shows the mechanical evolution expressed
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FIG. 2. (color online) Mechanical response and AE sequence
for experiment on Vycor (V32). (a) Cumulative number of
events N (dark-red) and height evolution h (light-green) in
experiment V32 as function of uniaxial pressure P . The size of
the circles depends on the AE energy (size ∼ E0.25

AE ). (b) Mean
AE activity rate dN/dt (dark-red histograms) and strain rate
dh/dt (light-green histograms) in intervals of ∆P = 100 kPa.
Vertical gray lines: P k

c .

as a decrease in sample height (h(t)) and the cumu-
lative number of AE events (N(t)) for the experiment
V32. Fig. 2.b shows the activity rate (dN/dt) and the
decrease in height (dh/dt) evaluated in intervals of uni-
axial pressure ∆P = 100 kPa (converted from t by dP/dt
in Table I). We identify several sharp drops in h (five
in Fig. 2), with a short characteristic temporal span
∆tc ≈ 0.1 s (or ∆P ≈ 100 Pa), at pressure values P k

c .
These so-called strain drops are outliers to an otherwise
smooth strain evolution, as observed in the dh/dP pro-
file, and match a simultaneous increase of AE activity
(dN/dP ) and strong AE events. The events at P k

c resem-
ble brittle failure, a typical outcome of internal weaken-
ing or progressive damage in MF micromechanical models
[10, 56]. Brittle failure events are macroscopic by defini-
tion. Thus, during a loading cycle a single (not multiple)
brittle event is expected in these models. Here, however,
the material recovers the stiffness during the intervals
P k
c < P < P k+1

c (Fig. 2). This can be explained by hard-
ening, as reported in compression experiments [12], due
to the accommodation of the stress field. The presence of
both weakening and hardening localizes damage in brit-
tle events that can correspond to spallation correcting
boundary defects [57] or be arrested due to stress het-
erogeneities [58]. An ultimate system sized failure event
collapsing the whole sample is observed in all experiments
(P 5

c in Fig. 2 has an associated ∆h ∼ 5 mm).

We study how the statistics of AE events are modified
close to the most prominent stress drops by evaluating
〈EAE〉, ε and dEAE/dt in short stress intervals correlated
with the distance to each strain drop: fk := 1 − P/P k

c .
We select P k

c as the onset of each strain drop, identified
with a precision of 0.01s (equivalent to δfk ∼ 10−6 −
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FIG. 3. (color online) Statistical variations with distance to strain drops P k
c . The color-scheme identifies the index k. (a,b,c)

Exponent ε̂(fk) from Eq. (2) estimated within the interval (1.0− 1000 aJ). (d,e,f) Mean energy per signal 〈EAE〉(fk); expected
mean value according to D(E;Em, Ec, ε̂(fk)) (triangles) with Ec = 106 aJ (104 aJ for SR2); expected value from the global
exponent (gray line). (g,h,i) Rate of AE energy dEAE/dt; thin gray line: exponent m fitted by least squares within 10−6 <

fk < 10−1; thick gray line: a correction as expected by critical failure ( D(E;Em, Emf
β(ε̂,m̂)
k , ε̂(fk)) with global ε̂ and estimated

m̂. The fk intervals of evaluation grow exponentially and have an imposed minimum size of n = 100 signals (n = 50 for G26).
X-error bars: integration interval; Y-error bars: 90% bootstrap interval in (d–i) and likelihood standard deviation in (d–f).
Hard lower threshold imposed at Em = 1.0 aJ.

10−5) and compare the results to Eq. (2) where D is an
exponential cutoff:

D(E;Em, Ec, ε)dE = E−ε
Eε−1

c exp
(
− E

Ec

)

Γ
(
1− ε, Em

Ec

) dE. (5)

Here, Γ(a, x) is the incomplete gamma function and Em

is the lower boundary of the distribution. Ec is the
characteristic scale of the exponential cutoff and, ac-
cording to critical failure, should be proportional to f−β

k

(Eq. (2)). We truncate the distribution at the lower
boundary Em = 1 aJ, to avoid resolution artifacts dis-
torting the power-law for low energies.

We inquire if the strain drops at P k
c can be interpreted

as independent failure events, identified by at least one of
the three trademarks mentioned earlier. Figs. 3.a–c show
the exponents ε̂(fk) estimated by Maximum Likelihood
inside the interval 1–1000 aJ [59] (‘ ̂ ’ denotes estima-
tion), compared to the global estimated exponent (gray
line). Figs. 3.d–f show the mean energy of individual AE
events (〈EAE〉(fk) in dots) compared to the solution to
Eq. (5) (triangles) with ε̂(fk) from Figs. 3.a–c and sta-

tionary Êc (gray lines). Lower panels (Figs. 3.g–i) show

the rate of energy released by all events in temporal in-
tervals (dEAE/dP (fk) in dots). In Figs. 3.g–i, since some
avalanches last longer than the evaluation intervals close
to failure, their AE-energy is split in intervals of 1 ms in
order to increase the temporal resolution. The exponent
ε̂(fk) is almost stationary except for a few low values in
the last intervals before P k

c . Since all ε̂(fk) < 2, criti-
cal failure expects a divergence in 〈EAE〉 when fk → 0.
As first reported in Vycor [4], 〈EAE〉(fk) is instead al-
most stationary and compatible with a finite and con-
stant Êc (see EAE distributions in supplementary ma-
terial [URL-will-be-inserted-by-publisher ]). Only the last
intervals prior to failure show higher 〈EAE〉(fk), close
to the 90% confidence interval limit. Despite the sta-
tionary 〈EAE〉, all data sets exhibit a steady increase in
dEAE/dt starting far from failure (Figs. 3.g–i), as pre-
dicted by ASR (Eq. (1)) considering m ∼ 1.0 (thin gray
lines). Thus, we observe ASR, even when avalanches are
non-critical.

Fig. 3 illustrates how ASR (Eq. (1)) is more general
than critical failure (Eq. (2)). This result can be re-
produced by introducing microscopical mechanisms of
transient hardening such as rheology damage [60, 61],
rate-and-state dependent friction [62] or viscoelastic-
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V32 G26 SR2 slip MF fracture MF

γ 3.0 (4) 3.4 (4) 3.2 (4) 3 3

ε 1.40 (5) 1.40 (5) 1.50 (5) 4/3 4/3

m 1.02 (13) 1.11 (20) 0.99 (8) 1a 2b 1/2a 1b

σνz 0.50 (6) 0.45 (6) 0.48 (5) 1/2 1/2

κ 1.60 (8) 1.62 (8) 1.76 (8) 3/2 3/2

σa 0.40 (9) 0.34 (9) 0.24 (8) 1/2 1

σb 0.88 (12) 0.80 (16) 0.76 (7) 1/2 1

βa 3.7 ± 0.8 4.6 ± 1.2 6.3 ±2.1 3 3/2

βb 1.67 (24) 1.83 (37) 2.00 (25) 3 3/2

TABLE II. First three top rows: fitted exponents as repre-
sented in Fig. 3.g–i, Fig. 2.a–c and Fig. 3.a–c, compared to
the MF exponents for slip and fracture. Bottom rows: funda-
mental exponents estimated from MF theory. Superscripts a
(Eq. (7)) and b (Eq. (3)) denote two different interpretations
of ASR in terms of MF theory (see text).

ity [38, 63, 64], into models that would otherwise ex-
hibit critical failure [55, 56, 64]. Transient hardening acts
as an effective dissipation [55, 56, 65] preventing criti-
cality [56, 64, 66, 67] and introduces temporal scales
to the model reproducing the foreshock and aftershock
sequences [55, 63, 68]. The latter are perceivable in
Fig. 2.a after P 5

c for example, and reported in Refs. [4, 5]
and the supplementary material [URL-will-be-inserted-
by-publisher ].

Some of the last intervals preceding P k
c exhibit a signif-

icant decrease of ε̂ (see Fig. 3.c) and an increase in 〈EAE〉
even higher than the expectation from Eq. (5) and the
estimated ε̂ . Such intervals might contain superposi-
tion of events [69], artifacts due to the signal clipping
of large avalanches and/or strong AE related to brit-
tle failure. As discussed in Ref. [55] brittle events can
follow particular statistical laws. Some experiments of
rock fracture report instead a progressive decrease in ε̂
far from failure [1, 39, 43, 70, 71] but this is not a uni-
versal feature [48] and it is also inconsistent with mod-
els [20]. Anisotropic stresses are known to affect ε in
structural phase transitions [72], which might or might
not play a role in rock fracture [48]. The small size of
our samples, close to the width of localization bands
in sandstones [48, 73], might prevent any band-related
anisotropy. Finally, several brittle events might com-
monly appear under uniaxial compression, since simi-
lar results were reported at constant stress [74]. Sim-
ulations can reproduce multifragmenation from dynamic
fracture [75] or localized weakening bands in a predomi-
nantly hardening process [14, 20].

Both friction and different fracture mechanisms are in-
volved in mechanical failure under compression [24, 76].
We compare the experimental values of ε,γ and m to
the MF solutions of pure fracture and frictional models
with transient hardening. We consider the MF stick-

slip model [10, 54, 77, 78] as a prototype for frictional
avalanches and the democratic fiber bundle model [37]
for fracture (see supplementary material [URL-will-be-
inserted-by-publisher ] which includes Refs. [79–81]). The
collection of MF exponents [10, 55, 82] is shown in Ta-
ble II. The critical exponents (Eqs. 2 and 4) are defined
in terms of the size (S) of the avalanche from the rela-
tions:

D(S; f)dS = S−κDS(Sf
1/σ)dS ; 〈S|T 〉 ∼ T 1/σνz.

(6)
In MF models the exponents κ, σνz, ε and γ are universal
and invariant under transient hardening [10, 55]. Given

the broad regime with 〈DAE〉 ∼ E
1/γ
AE (Fig. 1) we assume:

EAE ∝ E. The estimated exponents ε and γ determine
the values of κ and σνz, as shown in Table II. While σνz
and β are MF, κ and ε are higher but close to MF, below
2-SD (standard deviation) in V32 and G26 and 3-SD in
SR2, which might indicate the relevance of long-ranged
elastic interactions.
The MF solutions of friction and fracture are similar,

but differ in the values of 1/σ and β related to the ap-
proach to failure (see supplementary material [URL-will-
be-inserted-by-publisher ]). Furthermore, the interpreta-
tion of m in terms of the MF exponents is unclear when
transient hardening is present. According to MF mod-
els, the exponent m defining the seismic energy released
(Eq. (1)) is modified by transient hardening. Following
Eq. (6), the mean size in models with critical failure di-

verges as 〈S〉(f) ∼ f
κ−2

σ and, thus dS/dt ∼ f
κ−2

σ . Under
slow driving, dS/dt is invariant under transient harden-
ing [55]. Considering the constant 〈E〉(f) observed in
Fig. 3.d–f, the MF model assumes that 〈S〉(f) is also
constant. Thus, dS/dt diverges due to the divergence of
dN/dt and, instead of Eq. (3) we have:

dE/dt(f) = 〈E〉(f) dN/dt(f) ∼ f
κ−2

σ . (7)

This interpretation of dE/dt(f) derived from MF theory
is presented with superscripts a in Table II. The ex-
perimental m = (κ − 2)/σ ≈ 1 coincides with the MF
model of frictional avalanches. However, the values of
1/σ ∼ 2.5 − 4 and β ∼ 4 − 6 are higher than the MF
predictions of both models.
The relation between m and the fundamental expo-

nents is discussed in MF theory, but not in models with
local interactions, where transient hardening is known to
affect the exponents [63, 83]. An alternative hypoth-
esis is that ASR (Eq. (3)) is invariant under transient
hardening. Then, m = (ε − 2)β ≈ 1 is compatible with
the fracture MF model and the exponents σ ∼ 0.8 and
β ∼ 1.8 are between both models, and notably closer
to fracture (superscript b in Table II). The presence of
brittle events denoting damage and related to fracture
is consistent with this interpretation. Rock fracture ex-
periments at low confining pressure [24] are dominated
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by tensile fracture (not shear) AE events, a phenomenon
related to dilatancy, and also reproduced in numerical
simulations [84].
In conclusion, sharp strain drops with massive AE

events denoting brittle failure are identified during
the compression of nanoporous materials. Instead
of critical failure we find that 〈EAE〉 is stationary
and accelerated seismic release (ASR) is exclusively
observed in the activity rate (dNAE/dt). Experiments
under strain driving reported similar results [48], but
failure precedes the divergence time of ASR (tc in
Eq. (1)), especially in materials with low porosity (Φ .

10%) [49]. Many theoretical models expect avalanche
criticality at failure due to the divergence of correlation
lengths [15–17, 37, 51]. This criticality can be prevented
by dissipation [64, 66, 67], the dynamic weakening or
hardening of the material [10, 56] or the combined
effect [65]. In particular, the ASR and the lack of
criticality reported here, together with the temporal
correlations reported in Ref. [5] can be reproduced by
transient hardening [55]. In our experiment, an effective
transient hardening can be caused by one or several
internal micromechanical processes such as viscoelastic-
ity [63, 85], friction between crack surfaces [68], stress
corrosion [86], diffusion of internal fluids [87, 88], etc..
In contrast, externally measured slip avalanches usually
scale to failure and appear unperturbed by transient
hardening [25–28]. Analytic solutions of MF models
allow us to interpret the experimental results in terms
of critical exponents. While the interpretation of the
ASR (Eq. (1)) and its associated exponents remains
an open question, other exponents are consistent with
MF theory. A remaining challenge for the future is to
validate this extension of MF models to non-critical fail-
ure through new micromechanical experiments able to
control the potential mechanisms of transient hardening
and dissipation.
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[12] Raúl Cruz Hidalgo, Christian U Grosse, Ferenc Kun,
Hans W Reinhardt, and Hans J Herrmann. Evolution
of percolating force chains in compressed granular me-
dia. Physical Review Letters, 89(20):205501, 2002.

[13] R Burridge and Leon Knopoff. Model and theoretical
seismicity. Bulletin of the seismological society of amer-

ica, 57(3):341–371, 1967.
[14] K Duan, CY Kwok, and LG Tham. Micromechanical

analysis of the failure process of brittle rock. Interna-

tional Journal for Numerical and Analytical Methods in

Geomechanics, 39(6):618–634, 2015.
[15] Didier Sornette. Mean-field solution of a block-spring

model of earthquakes. Journal de Physique I, 2(11):2089–
2096, 1992.

[16] Yehuda Ben-Zion and James R Rice. Earthquake
failure sequences along a cellular fault zone in a
three-dimensional elastic solid containing asperity and



6

nonasperity regions. Journal of Geophysical Research:

Solid Earth, 98(B8):14109–14131, 1993.
[17] L De Arcangelis, S Redner, and HJ Herrmann. A random

fuse model for breaking processes. Journal de Physique

Lettres, 46(13):585–590, 1985.
[18] Stefano Zapperi, Purusattam Ray, H Eugene Stanley,

and Alessandro Vespignani. First-order transition in the
breakdown of disordered media. Physical Review Letters,
78(8):1408, 1997.

[19] Y Moreno, JB Gomez, and AF Pacheco. Fracture and
second-order phase transitions. Physical Review Letters,
85(14):2865, 2000.

[20] David Amitrano. Variability in the power-law distribu-
tions of rupture events. The European Physical Journal-

Special Topics, 205(1):199–215, 2012.
[21] Mikko J Alava, Phani KVV Nukala, and Stefano Zapperi.

Statistical models of fracture. Advances in Physics, 55(3-
4):349–476, 2006.

[22] Ashivni Shekhawat, Stefano Zapperi, and James P
Sethna. From damage percolation to crack nucleation
through finite size criticality. Physical Review Letters,
110(18):185505, 2013.

[23] Jörn Davidsen, Grzegorz Kwiatek, Elli-Maria Char-
alampidou, Thomas Goebel, Sergei Stanchits, Marc
Rück, and Georg Dresen. Triggering processes in rock
fracture. Physical Review Letters, 119:068501, August
2017.

[24] Sergei Stanchits, Sergio Vinciguerra, and Georg Dresen.
Ultrasonic velocities, acoustic emission characteristics
and crack damage of basalt and granite. Pure and Ap-

plied Geophysics, 163(5-6):975–994, 2006.
[25] Nir Friedman, Andrew T Jennings, Georgios Tsekenis,

Ju-Young Kim, Molei Tao, Jonathan T Uhl, Julia R
Greer, and Karin A Dahmen. Statistics of dislocation
slip avalanches in nanosized single crystals show tuned
critical behavior predicted by a simple mean field model.
Physical Review Letters, 109(9):095507, 2012.

[26] R Maaß, M Wraith, JT Uhl, JR Greer, and KA Dahmen.
Slip statistics of dislocation avalanches under different
loading modes. Physical Review E, 91(4):042403, 2015.

[27] James Antonaglia, Xie Xie, Gregory Schwarz, Matthew
Wraith, Junwei Qiao, Yong Zhang, Peter K Liaw,
Jonathan T Uhl, and Karin A Dahmen. Tuned criti-
cal avalanche scaling in bulk metallic glasses. Scientific

Reports, 4, 2014.
[28] DV Denisov, KA Lörincz, JT Uhl, KA Dahmen, and

P Schall. Universality of slip avalanches in flowing gran-
ular matter. Nature communications, 7:10641, 2016.

[29] Dmitry V Denisov, Kinga A Lőrincz, Wendelin J Wright,
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[72] R Niemann, J Baró, O Heczko, L Schultz, S Fähler,
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