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We demonstrate via direct numerical simulations that a periodic, oscillating mean flow sponta-
neously develops from turbulently-generated internal waves. We consider a minimal physical model
where the fluid self-organizes in a convective layer adjacent to a stably-stratified one. Internal waves
are excited by turbulent convective motions, then non-linearly interact to produce a mean flow re-
versing on time scales much longer than the waves’ period. Our results demonstrate for the first time
that the three-scale dynamics due to convection, waves, and mean flow, is generic and hence can
occur in many astro/geophysical fluids. We discuss efforts to reproduce the mean flow in reduced
models, where the turbulence is bypassed. We demonstrate that wave intermittency, resulting from
the chaotic nature of convection, plays a key role in the mean-flow dynamics, which thus cannot be
captured using only second-order statistics of the turbulent motions.

An outstanding question in fluid dynamics is whether
large-scale features can be accurately captured in reduced
models that do not resolve fluid motions on small spatio-
temporal scales. Reduced models are necessary in many
fields of fluid mechanics, since fluid phenomena often
occur on a wide range of spatial and temporal scales,
preventing exploration via direct numerical simulations
(DNS) of the Navier-Stokes equations. This question
is of interest to, for instance, the turbulence commu-
nity, which has developed closure models in Large-Eddy
Simulations and Reynolds-Averaged Navier-Stokes sim-
ulations [1]; the statistical physics and geophysics com-
munities, who aim to describe the self-organization and
large-scale behavior of turbulent flows [2–5]; atmospheric
and oceanographic scientists, whose goals are to provide
long-time predictions of the evolution of our climate us-
ing weather-ocean models with coarse resolution [6, 7].

A drastic approximation would be to assume that
large-scale flows and small-scale motions are dynamically
decoupled, but this is rarely the case. A number of im-
portant slow large-scale flows are controlled by rapid pro-
cesses at the small scales. For instance, the 22-year cycle
of solar magnetism is driven by the Sun’s convective in-
terior, which evolves on month-long or shorter timescales
[8, 9]; upwelling of the planetary-scale thermohaline cir-
culation of Earth’s oceans hinges on enhanced mixing
events that critically depend on small-scale (∼ 100 me-
tres) internal waves [10, 11]; Jupiter’s zonal jets develop
from small-scale turbulence patterns due to convective
heat transfers in the weather layer and deep interior [12].

The generation of a large-scale flow by turbulent fluc-
tuations can be studied by spatial-averaging the Navier-
Stokes equations. Let us consider the case of a large-scale
mean flow ū in the horizontal x direction perpendicular
to downward gravity. We write (u′, w′) the velocity fluc-
tuations in (x, z) directions with ẑ the upward vertical
axis. In these two dimensions, the horizontal-mean of

the Navier–Stokes equation in the x direction reads

∂tū− ν∂zzū = −∂z(w′u′), (1)

with ν the kinematic fluid viscosity. The right-hand side
of (1) is minus the divergence of the Reynolds stress and
is the momentum source or sink for the mean flow. In
isotropic homogeneous turbulence, we do not expect the
generation of a mean flow due to the lack of symmetry
breaking. However, any inhomogeneity or anisotropy of
the fluctuations can initiate a slowly-varying mean flow,
whose fate depends on its interaction with the fluctu-
ations [4]. The parameterization of the Reynolds stress
(w′u′) for unresolved scales is the key ingredient in all re-
duced models. Generally, a closure model expresses the
Reynolds stresses in terms of the resolved variables [1].

In our case of interest, the small-scale fluctuations are
oscillating disturbances of the density field called inter-
nal waves. Internal waves are ubiquituous in oceans
[13], planetary atmospheres [14–17], stars [18, 19], brown
dwarves [20] and planetary cores [21]. In the atmosphere,
internal waves actively contribute to the generation of
mean equatorial winds in Earth’s stratosphere, which
change direction roughly every 14 months, coined the
Quasi-Biennial Oscillation (QBO) [22]. Internal waves
may also be involved in the generation of reversing zonal
flows on Saturn [23] and Jupiter [24], they are of inter-
est for extrasolar planetary atmospheres [25], and may
influence the differential rotation of stars [26] and slow
large-scale motions of Earth’s magnetic field [27].

Here, we report results of the first DNS of a realistic
slowly-reversing mean flow in two dimensions, and we un-
ravel the key physics of the generation mechanism using a
hierarchy of low-order models in which the Reynolds forc-
ing is approximated. We use the horizontally-periodic
self-consistent model of convective–stably-stratified dy-
namics of [29]. The velocity u = (u,w), temperature T ,
and density anomaly ρ = −αT satisfy the Boussinesq
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FIG. 1. DNS results. (A) and (B) show snapshots of the vertical velocity field w at times t1 = 2.21 and t2 = 2.24, along
with the mean flow ū (solid line) for z > zNB = 0.68 (with ū = 0 corresponding to x = 1). Vertical velocity patterns show
convective motions in the lower part of the domain (z ≤ zNB) and internal-wave motions in the upper part (z ≥ zNB). Note
that energy propagates upward along wave crests, so crests toward the upper left (right) correspond to retrograde (prograde)
waves. (C) shows the mean flow ū(t, z). The mean flow in the convective zone corresponds to the average of stochastic plumes
emitted from the bottom boundary, hence reverses on a relatively rapid, convective time scale. In the stably-stratified layer,
ū results from the nonlinear interaction of internal waves and oscillates on time scales ∼ 0.1, much longer than the buoyancy
period ∼ π10−4. Simulation details and movies are available in Supplemental Material [28].

equations

∂tu + (u · ∇)u +∇p = Pr∇2u− PrRaρẑ − uτ, (2a)

∂tT + (u · ∇)T = ∇2T, (2b)

∇ · u = 0, (2c)

non-dimensionalized with κ (thermal diffusivity) and H
(characteristic height). The fluid is thermally stratified
(Tt and Tb imposed on the top and bottom no-slip bound-
aries) and exhibits a buoyancy reversal at the inversion
temperature Ti with Tb > Ti > Tt (similar to water
whose density maximum is at 4◦C [30]). Thus the fluid
spontaneously organizes into a lower, nearly isothermal
convective region, and an upper stably stratified region.
Pr = ν/κ and Ra = αsg∆TH3/(κν) are the Prandtl and
global Rayleigh numbers; αs is the expansion coefficient
for T > Ti; and ∆T > 0 is the difference between the di-
mensional bottom and inversion temperatures, such that
using Ti = 0 as the dimensionless reference temperature,
we have Tb = 1. The buoyancy reversal is obtained using
the nonlinear equation of state for ρ:

ρ(T ) = −α(T )T =

{
−T, T ≥ Ti = 0,
ST, T ≤ Ti = 0,

(3)

with S the stiffness parameter [29]. We define the neu-
tral buoyancy level zNB to be the height where adiabatic
plumes emitted from the bottom boundary become neu-
trally buoyant. This corresponds to the height of the
convection zone [29, 31], or equivalently, the base of the

stable layer (dashed lines in figures 1A-B). The normal-
ized domain lengths are Lx = 2, Lz = 1.5 in the x, z
directions, which leads to an aspect ratio of the convec-
tion at statistical steady-state close to 3 for all simula-
tions; τ = 102

√
2{tanh[(z − Lz + 0.15)/0.05] + 1}/2 is

a z-dependent radiative damping used to prevent wave
reflections from the top boundary. We solve equations
(2) via DNS using Dedalus [32] with Chebyshev polyno-
mials (Fourier modes) in z (x) direction. DNS are run
over several thermal diffusion times in order to allow the
system to reach a statistical equilibrium self consistently,
and obtain several reversals of the mean flow.

Figure 1 shows the main DNS results of the paper, ob-
tained for Tt = −43, Tb = 1, Pr = 0.2, Ra = 1.2 × 108

and S = 1/3, such that the convection-wave coupling is
relatively strong and the interface is flexible [29]. With
zNB = 0.68, the effective Rayleigh number is Raeff =
z3
NBRa ≈ 4 × 107. Snapshots of vertical velocity (fig-

ures 1A,B) reveal large convective updrafts and down-
flows below zNB , and internal waves above. If there was
no mean flow in the stably stratified layer, convection
would generate prograde and retrograde waves with sim-
ilar amplitude. However, in figures 1A,B, the internal
waves are mostly propagating in a single direction, an
indication that the mean-flow (shown by the solid line)
is filtering waves going in the opposite direction. The
evolution of the mean flow over one thermal time scale is
shown in figure 1C. The stable layer has a strong mean-
flow which reverses every ∼ 0.05 thermal time. Each new
mean-flow phase starts near the top of the domain and
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descends toward the convective layer. The mean flow is
driven by wave damping at critical layers and by viscous
and thermal dissipation. Critical layers are ubiquitous in
our DNS because convection generates a broad spectrum
of waves, some of which have low phase velocities. Vis-
cous and thermal dissipation effects are relatively strong
in our DNS, so the basic mean-flow mechanism is essen-
tially due to wave dissipation.

Previous studies of wave–mean-flow interactions have
focused on momentum-deposition by internal waves of
a single frequency and wavenumber [33, 34]. In such
cases, it can be shown analytically that a slowly-reversing
mean flow emerges provided that there are both pro-
grade and retrograde waves, as well as an initial distur-
bance. The prograde (resp. retrograde) wave provides a
+x positive (resp. negative) acceleration for the mean-
flow through damping. Then, the competition of the two
forces (whose intensity depends on the direction of the
mean flow through the Doppler shift) leads to the ob-
served long-time oscillation of ū [22].

Our results demonstrate for the first time that an oscil-
lating mean flow can emerge from internal waves gener-
ated by turbulent motions with no control over the waves
(i.e. no parameterization). Importantly, the fundamen-
tal mechanism that applies for monochromatic waves
also applies for a broadband spectrum of internal waves:
damping and momentum deposition is stronger for waves
going in the same direction as the mean flow. This is
shown in figure 1A where a strong mean flow in the pos-
itive direction strongly dissipates prograde waves, such
that only retrograde waves can be visible above. The
same is true in figure 1B but for the case of a negative
mean flow. With a broadband spectrum of waves, whose
amplitudes can vary over time due to the chaotic dy-
namics of convection, momentum deposition cannot be
simply traced back to a handful of self-interaction terms
in the Reynolds stress that would be coherent over long
times. Driving of a mean flow in this context may be
unexpected, but is in fact generic at sufficiently low Pr:
as figure 2 shows, the mean flow becomes stronger and
more regular as Pr decreases. This can be understood
from the fact that while the forcing through wave damp-
ing is only weakly affected by decreasing Pr (because
waves are damped through both viscous and thermal dis-
sipation effects), the mean flow experiences much less
dissipation (it is only damped through viscosity effects),
hence becoming stronger. As a result, wave-driven flows
should emerge relatively easily in low-Prandtl-number
fluids such as planetary cores made of liquid metal and
stellar interiors [35, 36], potentially affecting planetary
and stellar dynamos [37] and magnetic reversals [38, 39].

We now compare results of the full DNS model for the
parameters of figure 1 (denoted by M1) with results ob-
tained from two reduced models (M2 and M3), described
in figure 3A. The goal of the reduced models is to repro-
duce the evolution of the mean flow without resolving the

FIG. 2. Mean flow rms ūrms as a function of Pr. The
mean flow becomes stronger as Pr decreases and is also
more regular: the symbols’ area is inversely proportional
to the frequency bandwidth of ū, defined as the difference
∆f = f.9 − f.1 of the two frequencies f.1 and f.9 below and
above which lies 10% of the mean-flow energy.

convection. M2,3 only solve the dynamics of the stable
layer and are forced by prescribing values for the flow
variables at its base (zNB). If we force with exact val-
ues of (u′, w′) and T ′ from the full DNS, the evolution
of ū is exactly reproduced (not shown). Observations of
real systems do not generally provide information about
all variables at sufficient temporal and spatial resolution
over long time periods, so we only use a subset of the full
DNS data to force the reduced models. Specifically, here
we expand the fluctuations u′, w′, T ′ in M2,3 in series
of linear internal-wave modes, and we set their ampli-
tudes such that the kinetic energy of each wave mode
matches the kinetic energy spectrum K(ω, k) obtained in
the full DNS at zNB . We could have set the shape of the
internal-wave spectrum by using theoretical predictions
for the wave generation by turbulent convection [40, 41],
but that would preclude a comparison to M1, whose wave
spectrum differs from, e.g., [40, 41].

The reduced models only differ in how wave propaga-
tion away from the bottom boundary is solved. In M2,
wave propagation is solved exactly by DNS of the Boussi-
nesq equations, while in M3, a closed-form solution for
the Reynolds stress is derived such that we only solve
the 1D mean-flow (1). The analytical solution for the
fluctuations (u′, w′) in M3 is obtained through WKB
approximation, neglecting nonlinear wave-wave terms,
mean-flow acceleration, and cross-interaction terms in
the Reynolds stress (cf. details in Supplemental Material
[28]). We note that while M2 is computationally cheaper
than M1 (resolution is 8 times smaller and time steps
are ∼ 3 times larger), it remains significantly more de-
manding than M3, which is the only practical model for
predicting the long-term dynamics of real systems (e.g.
capturing the QBO in GCMs). The goal of M2 is to
check approximations made in M3.

Figure 3B shows the temporal variations of the mean
flow ū obtained in full DNS M1 and in the two reduced
models M2 and M3. A large-scale oscillation is obtained
in all three models, but the mean flow is stronger and the
period is longer in the reduced models than in full DNS.
Let us consider the characteristic amplitude of the mean-
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FIG. 3. (A) Schematics of the DNS model M1 and the two reduced models M2 and M3. [1] We calculate the kinetic energy
spectrum K of the fluctuations at height zNB obtained in M1. [2] The forcing (u′, w′, T ′) is derived from K assuming that the
fluctuations correspond to linear propagating internal waves. Propagation of the waves is solved [3] via DNS of the Boussinesq
equations in M2, but is derived analytically [4] in M3 under WKB approximation. Thus, in M3, [5] we only need to solve for
the mean-flow equation. As in full DNS, we use a damping layer for 1.35 < z < 1.5, and boundary conditions for the mean
flow are no slip. (B) ū over one thermal time obtained for each model shown in (A). Physical parameters are as in figure 1.

flow by its rms (ūrms), and the characteristic period by
taking the inverse of the peak frequency of the Fourier
transform (Tū), which we average vertically between z =
0.8 and 1.1. We have: ūrms = 179 (M1); 370 (M2);
and 415 (M3); Tū = 0.125 (M1); ≈ 0.33 (M2); and
≈ 0.33 (M3). Clearly, even when the wave propagation
is solved exactly by DNS (M2), the mean-flow dynamics
is not reproduced quantitatively. In addition, the large
temporal variability of the mean flow obtained in full
DNS is lacking in both reduced models.

The large discrepancy between the reduced models and
DNS comes from the assumption that fluctuations on the
lower boundary z = zNB of M2,3 can be reconstructed
from the time-averaged spectrum K using the linear wave
relations for upward propagating plane waves. However,
K can include contributions from overshooting plumes
and some of the waves may be nonlinear. In our M1 (M2)
simulations, the nonlinear terms have a typical magni-
tude of approximately 50% (10%) the linear terms at
z = 0.7, suggesting overshooting convection in M1 may
be non-negligible at the interface. However, in the bulk
of the stable region, this decreases to about 10% (5%), so
the waves are in a weakly nonlinear regime (cf. details in
Supplemental Material). Because the waves are weakly
nonlinear, the energy transfer among waves does not af-
fect the mean flow, explaining the agreement between M2

and M3. Because forcing using the spectrum higher than
zNB could in principle attenuate contributions from non-
linear convective motions, we have run additional simu-
lations with different forcing heights (cf. Fig. S2 of the

Supplemental Material [28]): quantitative changes for the
mean flow are obtained, but never lead to agreement with
full DNS results. Importantly, the reconstruction of wave
fluctuations from an energy spectrum neglects high-order
statistics (higher than two), so statistics in the reduced
models are Gaussian. However, intermittent events ex-
ist near the interface because the convection does not
have a top-down symmetry and exhibits non-Gaussian
statistics. In fact, the kurtosis remains large significantly
higher than zNB (see Fig. 3 of the Supplemental Material
[28]), suggesting that intermittency is a key component of
wave generation. Intermittent intense wave events found
in our DNS but neglected in the reduced models are typ-
ical of real systems. In the atmosphere, for instance,
atmospheric waves sometimes propagate in the form of
localized wave packets [42], such that wave intermittency
can be non-negligible and has to be incorporated in re-
duced mean-flow models using stochastic processes [43].

In conclusion, the spontaneous generation and oscilla-
tion of a mean flow in our minimal, physical model is ob-
tained for a wide range of parameters. In particular, we
find that the mean flow becomes stronger as Pr decreases
(figure 2), which highlights the necessity to account for
the real value of Pr in stellar and planetary dynamical
models. Evaluating the impact of wave-driven flows in
natural systems is challenging. Indeed, we have shown
here that reduced models do not yet predict the correct
physics: tackling simultaneously the three-scale dynam-
ics due to turbulence, waves, and mean flow, seems nec-
essary. A major source of errors in reduced models comes
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from the approximations made in the types of waves ex-
cited by convection, even if the stably-stratified layer is
forced with waves with the same kinetic energy spec-
trum as in full DNS. Our analysis suggests that imple-
menting wave intermittency (through a boundary forc-
ing scheme that would match the high-order moments
of the DNS statistics), and disantengling non-wave con-
tributions from the source spectrum are the next step
forward and will be essential to improve the long-time
predictive capabilities of low-order models.
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