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We study the propagation of surface plasmon polaritons (SPPs) on a metal surface which hosts a
thin film of a liquid dielectric. The ohmic losses that are inherently present due to the coupling of
SPPs to conductors’ electron plasma, induce temperature gradients and fluid deformation driven by
the thermocapillary effect, which lead to a nonlinear and nonlocal change of the effective dielectric
constant. The latter extends beyond the regions of highest optical intensity and constitutes a novel
thermally self-induced mechanism that affects the propagation of the SPPs. We derive the nonlinear
and nonlocal Schrödinger equation (NNLSE) that describes propagation of low intensity SPP beams,
and show analytically and numerically that it supports a novel optical spatial soliton excitation.

Introduction: Surface Plasmon Polaritons (SPPs)
are electromagnetic excitations that propagate at the
interface between a metal and a dielectric material
[1, 2]. The unique properties of the SPPs that
enable to concentrate light in a sub-wavelength region
around the interface and SPPs’ sensitivity to changes
of the dielectric constant, have motivated numerous
theoretical and experimental studies over the last
few decades with a broad range of applications in
bio-sensing [3], medicine [4], thermal/photo imaging
[5, 6], and solar energy [7, 8]. The inherent Joule
heat generation due to ohmic losses leads to an
increase of the metal’s temperature and affects the
properties of nearby objects by heat conduction. While
previous works investigated heating effects on fluids
due to SPP heat generation, such as generation of
Rayleigh-Bénard convection, [9, 10], thermophoretic
migration of suspended particles [11, 12], gas-fluid
phase transition [13], generation of micro-structures in
polymer films [14] and transport of liquid droplets [15]
- to the best of our knowledge the effect of the fluid on
SPP due to self-induced heating hasn’t been reported to
date.

In this work we theoretically study the interaction
between a propagating SPP along a planar metal surface
and an adjacent thin film of a dielectric liquid. Fig.(1a)
presents a schematic description of the problem; a
spatially non-uniform SPP beam propagates along the
z direction and locally heats the metal, which in turn
heats the gas-fluid interface. Local increase of the
free interface temperature leads to a surface tension
gradient and triggers the thermocapillary effect [16] (a
special case of the Marangoni effect [17]), manifested
by thermocapillary flows with a distinctive shape of
Bénard cells [18] and deformation of the free interface.
A local temperature increase usually leads to a decrease
of the surface tension in the hotter region, and to
interfacial flows from the hotter region to the colder
region, though few liquids are known to exhibit an
opposite behavior of the surface tension [19], both

FIG. 1. (a) 3D scheme of a propagating SPP along the z axis
on a metal surface near a thin liquid film; left - uniform thin
film of thickness h0 prior to heating effects; right - deformed
thin film after SPP generates nonuniform temperature field.
(b) normal cross section of a propagating SPP along a metal
of a finite width w embedded within a fluidic slot of width d,
(c,d) normal sections presenting thermocapillary flows (blue
arrows) and the deformed free interface for positive and
negative Marangoni constant, respectively, for the case w and
d are larger than the width of the SPP beam.

illustrated in Fig.(1c) and Fig.(1d). In case the liquid
film is thinner than the penetration depth of the SPP into
the bulk, the liquid deformation is coupled back to the
Maxwell equations through the changes of the liquid’s
dielectric constant, and together with the heat transport
form a complete set of coupled equations. This novel
SPP-fluid coupling mechanism induces changes in the
geometrical shape of the thin film of a liquid dielectric,
which is is fundamentally different from the traditional
thermo-optical effect, where the source of dielectric
function changes stems from changes of material
density and polarization. Importantly, the resultant
change of the liquid’s refractive index is spatially
nonlocal, in a sense that the induced fluid deformation
extends beyond the regions of highest optical intensity
to more distant regions. Prominent mechanisms that are
known to admit a light-induced nonlocal index response
are: charge transport in photorefractive crystals [20],
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atomic diffusion in atomic vapors [21, 22], heat
transport and changes of volume/atomic polarizability
[23], molecular long-range interaction in nematic
liquid crystals [24–26], coupling of lasing disordered
resonators via directional stimulated emission [27] and
quantum effects on the Thomas-Fermi screening length
[28, 29]. Several of these nonlocal mechanisms support
optical solitons, which are localized intensities of light
intensity due to a balance between diffraction and
nonlinearity of the medium, and have been in the focus
of an active research for the last few decades (see [30, 31]
and references within).

In this letter we derive NNLSE for an SPP under
thermocapillary induced nonlocal nonlinearity in the
dielectric material and then show that it supports a
novel spatial soliton excitation - an SPP that propagates
on a metal covered with a thin liquid film and a
dynamical fluidic plasmonic photonic crystal (FPPC)
with intensity tunable bandgap. We show that our
model naturally admits a strongly nonlocal limit of
the Snyder-Mitchell accessible soliton model [32], and
present numerical results that describe diffraction of
two SPP beams analogous to the Young double slit
experiment.

Governing equations for the non-linear media: Our
starting point is the Navier-Stokes equations for a
non-compressible fluid of viscosity µ, mass density ρ,
velocity field ui and stress tensor τij for Newtonian fluid
given by [33]

ρ (∂tui + uj∂jui) = ∂jτij ; i, j = x, y, z, (1)

The free surface of the thin film, which rests on a metal
surface (Fig.(1a)), satisfies the following stress balance
equation [33]

τijnj = σni~∇ · n̂− ~∇‖σ, (2)

where, σ is the surface tension, ~∇· n̂ is the divergence of
the normal and ~∇‖ stands for a gradient with respect to
the in-plane coordinates (y, z). In this work we assume
that the surface tension depends on temperature via [34]

σ(T ) = σ0 − σT∆T ; ∆T ≡ T − T0, (3)

where σT is the Marangoni constant known to exhibit
nearly temperature independent values over a large
range of temperature for many materials [35], and the
temperature field in the metal, Tm, is governed by the
following 2D equation

∂Tm

∂t
−Dm

th∇2
‖T

m =
∆T

I0τth
χI; χ ≡ αmthd

2I0
kmth∆T

, (4)

where the superscript m stands for quantities in the
metal and I is an optical intensity of typical strength I0.
Here, Dm

th = kmth/(ρ
mcmp ) is the heat diffusion coefficient;

ρm, cmp , kmth, αmth are the mass density, specific heat,
heat conductance, and optical absorption coefficient,
respectively; τth = d2/Dm

th is the typical time scale; d
is the typical length scale along the in-plane direction; χ
is the dimensionless intensity of the heat source.

Applying low Reynolds number and thin film
assumptions (i.e. lubrication approximation) [36, 37],
allows to neglect the inertial terms in the Navier-Stokes
equations, Eq.(1), and drop the in-plane derivatives
relative to the normal derivative. Together with the thin
film limit of the matching conditions, Eq.(2),[38] yields
the following equation for the thin film deformation η

∂η

∂t
+Dσ∇4

‖η = −σTh
2
0

2µ
∇2
‖T

m; Dσ ≡ σ0h30/(3µ), (5)

which includes the effects of surface tension and
thermocapillarity. Effects of gravity are negligible
on a microscale and expected to emerge on a much
larger scales comparable to the capillary length, [40],
whereas non-retarded van der Waals interaction can be
neglected for films with thickness above 100 nm [41].
The forces on a dielectric film due to non-homogeneity
of the dielectric function on the free surface and
electrostriction [42], are expected to have much lower
magnitude than the thermocapillary effect [39].

Taking advantage of the linearity of the thermal
transport and the thin film equations and assuming
quasi-static temperature field distribution, which for
transient problems typically holds at t > τth, we can
represent the deformation η in terms of the Green’s
function Gl of Eq.(5) and intensity as [39]

η(~r‖, t)/h0 = −M
∫
d~r′‖dt

′ 1

τth
Gl(~r‖−~r′‖, t−t

′)I(~r′‖, t
′)/I0.

(6)
Here, M ≡ Ma · χ/2 and Ma = σT∆Th0/(µD

m
th) is

the dimensionless Marangoni number which represents
the ratio between the surface tension stresses due to
the thermocapillary effect, and dissipative forces due
to fluid viscosity and thermal diffusivity. The typical
values of the time scales τl, τth and τel, that govern
the transport of liquid, heat and propagation of SPP,
respectively, satisfy

τel � τth � τl = d4/Dσ. (7)

Indeed, for the following values d = 1 μm, h0 = 0.25
μm, Dm

th = 10−4 m2s−1, Dth = 10−7 m2s−1, µ = 10−3

Pa·s, σT = 10−4 Nm−1K−1, σ0 = 10−3 Nm−1 we learn
that τl = 10−4 s, τth = 10−8 s, are much larger than
τel = 1/ω = 10−14 s and Eq.(7) holds. The additional
time scale that governs heat diffusion from the metal to
the free surface, h20/Dth, is on the order of magnitude
10−6 s, which is still much smaller than τl.

Nonlocal and nonlinear SPP: We now utilize
perturbation theory accounting for the propagation and
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diffraction of an SPP on a metal-dielectric interface,
incorporating dissipation as well as nonlinear and
nonlocal effects. We start our analysis from the
time independent Maxwell equations for TM waves.
Combining the sourceless Maxwell equations, yields the
following equations for the electric field, Em,di [1, 2],

∂2ijE
(m,d)
j − ∂2jjE

(m,d)
i = k20ε(~r)E

(m,d)
i ; k0 = ω/c, (8)

where i labels the different equations (i = x, y, z),
j is a summation index which runs on all values
j 6= i, and m, d stand for the metal and dielectric
regions, respectively. Employing the depth averaged
approximation [43], we treat the gas-fluid bilayer as
a single media with an effective index calculated by
averaging the index above the metal (x > 0) weighted
by the decay factor 2qde

−2qdx. Specifically, integrating
the index distribution nl (liquid) between 0 < x < h0+η
and ng (gas) for x > h0 + η yields the corresponding
changes of the depth averaged index and the dielectric
constant [39]

∆nD(η) = b̃η(~r‖, t)/h0; b̃ = 2qdh0(nl − ng)e−2qdh0 ;

∆εD(η) = bη(~r‖, t)/h0; b = 2n0b̃,
(9)

respectively. Here, we kept the leading term in the η/h0
series, q2d = β2

0(1 − εD), β0 = k0
√
εmεD/(εm + εD),

n0 =
√
εD = nl− (nl−ng)e−2qdh0 and the dimensionless

deformation, η/h0, is determined by Eq.(6). Employing
perturbative expansion in dimensionless number M of
the governing equations for SPP in the metal, dielectric
with depth averaged dielectric function, ∆εD, and the
matching conditions between metal and dielectric, we
derive the following NNLSE [39]

2iβ0
∂A

∂z
+
∂2A

∂y2
+χ̃TCA

∫
d~r′‖dt

′Gl(~r‖−~r′‖, t−t
′)|A|2 = 0,

(10)
where χ̃TC = k20χTC/(I0τh) and A(y, z) is the envelope
of the SPP beam [39]. Here, χTC is a dimensionless
number, given by χTC = fbM and incorporates
the effects of thermocapillarity, kinematics of the
index averaged model and plasmonic enhancement
[44] through the dimensionless numbers M , b and f ,
respectively (see [39] for expression for f and [45, 46]
for an alternative derivation).

The limit of local interaction: Consider the case
schematically presented in Fig.(1b), where SPP of
vacuum wavelength λ is restricted to propagate along
a metal slab of width, w, which is smaller than the
width of the fluidic slot, d. Furthermore, we assume
that w � λ, which allows to neglect edge and other
effects due to strong lateral confinement which lead to
an enriched mode spectrum [47]. Therefore, we can
assume that SPP admits the form of a non-diffracting
beam, and following [48] the corresponding matching

conditions at x = 0 lead to the following dispersion
relation

β0εmE
(m)
z

∣∣∣
x=0

= iqm
(
n20 + ∆εD(η)

)
E(d)
x

∣∣∣
x=0

. (11)

Next, let us determine the temperature distribution and
the resulting thin film deformation due to an SPP that
begins to propagate along the slab at t = 0. To this
end, we determine the Green’s functions, Gth and Gl
which satisfy, respectively, Eq.(4) and Eq.(5) with a
source term δ(x − x0)H(t), where H(t) is Heaviside
function. For convenience, we consider the case where
the thin film forms an angle π/2 with the walls at x =
0, d, whereas the temperature field satisfies Dirichlet
boundary conditions at the edges x = (d ± w)/2.
Employing the closure relation [49], we derive the
corresponding expressions for Gl and Gth [39], which
upon convolving with Gaussian intensity leads to the
following closed form expression for η [39]

η(y, t)

h0
= − 2dMτlI

3π6τthI0

∞∑
n=1

(−1)n

λnn4
ϕn(y)ϕn(w2 )

(
1− e−λn

t
τl

)
.

(12)
Here, λn is a constant (see [39]) and ϕn(y) =√

2/d cos(nπy/d) is the set of the eigenfunctions
associated with the corresponding Sturm-Liouville
problem.

Fig.(1b) presents the fluid deformation given by
Eq.(12), showing that in the limit w � d, the length
scale that governs η is set by the width of the slot d.
Consequently, we can approximate the change of the
dielectric constant Eq.(9) along the metal slab, by the
value of the deformation at the center, η(d/2, t→∞). In
this limit the nonlinearity is reduced to a local Kerr-like
cubic nonlinearity and the index change, ∆nD can be
represented as either ∆nD = αTC∆T or ∆nD = n2|E0|2,
resembling index changes invoked due to traditional
thermo-optical and electro-optical effects, where [39]

n2 =
4

π6

σT
σ0

d4

h0

αmth
kmth

, αTC =
3b

2π3

σT
σ0

d4

w2h20
. (13)

It is instructive to compare index changes invoked by
the thermocapillary effect, ∆nTC , to changes triggered
by traditional thermo-optical effect, ∆nTO = αTO∆T
where αTO is the thermo-optical coefficient. Assuming
the values given below Eq.(7), and λ = 800 nm, αTO =
10−4 K−1, w = 5 μm, d = 15 μm, and utilizing Eq.(9),
yields αTC/αT0 ' 105. The latter indicates that similar
index changes, ∆nTO and ∆nTC , require much smaller
temperature increase for the case of the thermocapillary
effect. In practice, this ratio is expected to be smaller due
to thermal radiation losses and thermal advection.

Interestingly, thin film deformation driven by the
thermocapillary effect introduces substantial changes
of both real and imaginary parts of the dielectric
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function depending on the dielectric properties of the
liquid. Utilizing perturbation expansion of Eq.(11) in
the local Kerr-like nonlinearity limit, we can express
SPP momentum with leading correction as β = β0 +
∆β, where ∆β = ∆εDβ0qd(q

2
d + β2

0)/(2ε2D(q′d + qd))
[50], q2d = β2

0(1 − εD) and q′d = Re(qd). The
corresponding phase change ∆β vanishes for β0 = 0
and tends to −∆εDωp/(2(1 + εD)3/2) as β0 → ∞,
where ωp is the plasma frequency in the metal. In
particular, in case Im(εD) > 0, changes of fluid thickness
lead to power dependent changes of the real part of
the depth averaged index as well as enhanced gain
proportional to M. This is inherently different than other
gain mechanisms such as the electronic nonlinearity
resulting from one- or two-photon processes [51].

Consider now the case of self-induced change
in dispersion relation due to four SPP beams that
propagate on a metal slab of width, w which has a
size similar to the fluidic slot, d, and satisfy λ �
w, d. Furthermore, assume that these waves admit equal
amplitude, |E0|2, propagate along the directions (±ŷ ±
ẑ)/
√

2 and admit a wavefront larger than the size of the
fluidic cell. Treating these beams as a plane waves yields
the following optically induced intensity distribution,
16|E0|2 cos2(β0x/

√
2) cos2(β0y/

√
2), and upon inserting

it into Eq.(6) yields the following deformation [39]

η(~r‖,∞)

h0
= − τl

16τthλN
M · cos

(
β0x/

√
2
)

cos
(
β0y/

√
2
)
,

(14)
shown in Fig.(2a), where N is an integer given by
N = β0d/(

√
2π) and λn is a constant given in [39].

The deformation described by Eq.(14) admits a discrete
translation symmetry along the y, z axes, and constitutes
an FPPC for a lower power SPP that propagates in
this background over distances lower than its decay
length. Specifically, Fig.(2b) presents the projection of
the photonic band structure on the surface Brillouin
zone for two different cases with different thicknesses
h0 = 150 nm and h0 = 200 nm and periodicity 500
nm, obtained by utilizing a commercial-grade simulator
based on the finite-difference time-domain method [52].
To maximize the effect of the liquid, we have chosen the
liquid index of value nl = 2, which is slightly below the
index of selenium monobromide with nl = 2.1. [53]

Nonlocal effects: Consider a single SPP beam of a
finite spatial width, σSPP , that begins to propagate at
t = 0 along an infinite metal surface covered with a
thin liquid film. The response of the thin film can be
determined by the corresponding Green’s function, Gl,
of Eq.(5) with a source term δ(y)f(t). Film dynamics
can be probed by considering an exponentially relaxing
source with f(t) = e−t/ts , where ts is the relaxation time
scale. The corresponding Green’s function that vanishes

FIG. 2. (a) Surface deformation given by Eq.(14), optically
induced by four SPPs (directions are indicated by arrows). (b)
Bandstructure diagrams of the emerging FPPC for the cases:
(B) h0 = 200 nm and (C) h0 = 150 nm. (A) presents the case
without a liquid. Complete bandgap occurs for n = 3 (not
shown), which is beyond the reach of current technology.

in the limit of large times is given by [39]

Gl(y) = − 1

Dσ

e−|y|/ls (cos(|y|/ls) + sin(|y|/ls)) , (15)

where ls is the corresponding length scale given by
ls = (4Dσts)

1/4 that can be tuned by choosing
sufficiently large decay time scale ts. Importantly,
the Green’s function Eq.(15) admits Taylor expansion
at the origin and therefore allows to implement the
Snyder-Mitchell model [32], applicable for the strongly
nonlocal regime. Expanding the Green’s function inside
the integral, Eq.(10), asG(0)

l + 1
2 (y−y′)2∂2G(0)

l /∂y2 yields
a local Schrödinger equation with a harmonic oscillator
potential

2iβ0
∂ψ

∂z
= −∂

2ψ

∂y2
− χ̃TCI(0)

∂2G
(0)
l

∂y2
y2ψ, (16)

where ψ = e−izχ̃TCI
(0)β∗

0/(2|β0|2)A, ∂2G
(0)
l /∂y2 =

2/(Dσl
2
s), I(0) is the integral of |A|2 along the yz plane

and β∗0 is the complex conjugate of β0. Notably, the
sign of the potential term is determined by the sign of
the Marangoni constant, and χ̃TC < 0 simultaneously
guarantees a Gaussian soliton [39], analogous to the
solution obtained in [32], and an exponentially damping
factor, ezχ̃TCI

(0)Im(β0)/(2|β0|2), along the propagation
direction which captures dissipation effects.

To demonstrate the effect of nonlocality in case the
correlation length due to the thermocapillary effect is
comparable to σSPP , we turn to commercial numerical
solver [54] and implement built-in Explicit Runge Kutta
method. Fig.(3) presents an interference pattern of
two parallel SPP Gaussian beams of spatial variance
σSPP , analogous to Young’s double-slit experiment in
a leading order of a small parameter χTC . In this
approximation, the effect of the nonlocal self-induced
spatial index change is taken into account by evaluating
the integral in Eq.(10) along the input beam (see
Fig.(3d,e,f)) [39]. Fig.(3a,b,c) present diffraction patterns
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of two SPPs due to negative, zero and positive
Marangoni constant, respectively, that lead to induced
dielectric function (empty graph) and temperature
(dashed line). Notably, the index gradients required to
support the self-focusing and defocusing effects in (a)
and (c), respectively, are determined by the gradients of
the optical beams intensities whereas the temperature
field gradient is set by the much larger size of the metal
slab. The self-focusing effect presented in Fig.(3a) yields
solitary wave solutions where the deformed liquid acts
as a waveguide for SPP beams.

FIG. 3. Numerical results presenting diffraction pattern of two
SPPs for: (a) σT < 0, (b) σT = 0 and (c) σT > 0. (d,e,f) present
thin film shape (solid line), the optical intensity at z = 0 (filled
line) and the corresponding temperature distribution (dashed
line) [39]. Relevant parameters: σSPP = 2.5/

√
2, η/h0=0.2,

λ = 800 nm h0 = 200 nm, nl = 2, ng = 1; coordinate axes
normalized with respect to k0.

Summary and concluding remarks: We presented
a theoretical and numerical analysis of a novel
thermocapillary self-induced, nonlocal and nonlinear
mechanism for SPP-fluid interaction. In contrast to
the traditional thermo-optical effect where the dielectric
function modulation stems from changes of material
density and polarization, the thermocapillary effect
induces changes of the geometrical shape of the thin
film. This generates waveguide-like structures in the
fluid film, and exhibits much longer response time
and correlation length than other nonlocal mechanisms
reported to date. The coupling described in this
work is readily applicable to other optical systems
with heat dissipation such as photonic waveguides [55]
and more general fluidic systems such as fluid-fluid
interfaces, and may be applicable for thermal imaging.
Furthermore, dynamic modulation of other basic
properties of the optical lattice such as symmetry and
periodicity, opens a door to utilize our plasmonic system
as a quantum simulator of a many body quantum
systems such as topological insulators [56] recently
realized in photonic systems [57, 58].
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