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We observe coherent spin exchange between identical electronic spins in the solid state, a key
step towards full quantum control of electronic spin registers in room temperature solids. In a
diamond substrate, a single nitrogen vacancy (NV) center coherently couples to two adjacent S = 1/2
dark electron spins via the magnetic dipolar interaction. We quantify NV-electron and electron-
electron couplings via detailed spectroscopy, with good agreement to a model of strongly interacting
spins. The electron-electron coupling enables an observation of coherent flip-flop dynamics between
electronic spins in the solid state, which occur conditionally on the state of the NV. Finally, as
a demonstration of coherent control, we selectively couple and transfer polarization between the
NV and the pair of electron spins. Our observations enable the realization of fast quantum gate
operations and quantum state transfer in a scalable, room temperature, quantum processor.

Introduction.—Measuring and manipulating coherent
dynamics between individual pairs of electronic spins in
the solid state opens a host of new possibilities beyond
collective phenomena [1–5]. For example, a quantum reg-
ister consisting of several coherently coupled electronic
spins could serve as the basic building block of quan-
tum information processors and quantum networks [6–
8]. Additionally, recent proposals indicate that dynam-
ics between many unpolarized electronic spins can me-
diate fully coherent coupling between distant qubits to
be used for quantum state transfer [9–12]; measuring the
coherent flip-flop rate between a pair of electronic spins
could allow for sensitive distance measurements in indi-
vidual molecules in nanoscale magnetic resonance imag-
ing [13, 14].

However, such an interaction is a challenge to observe
[13, 14]. In particular, the identical spins need to be close
enough to interact strongly, such that the spins cannot
be spatially or spectrally resolved, to allow for polariza-
tion exchange. In prior work, polarization transfer was
measured between either spatially or spectrally resolved
electronic spins: e.g., between two Strontium-88 ions sep-
arated by µm scales [15] or between a nitrogen vacancy
(NV) color center and a substitutional nitrogen in dia-
mond [16–19]. Conversely, nuclear spin-spin dynamics
have been observed in diamond, facilitated by long nu-
clear spin coherence times and using a single NV center
as a mediator [20–22]. Control of NV-nuclear spin clus-
ters has led to using nuclear spins as a room temperature
quantum memory and quantum register [22–25], with ap-
plications such as NMR detection of a single protein [26]
and quantum networks [23, 27]. Similarly, manipulat-
ing interactions between identical electronic spins could
lead to faster gate times and long-distance transport in
solid state, room-temperature quantum information pro-
cessors [9], features that are challenging for nuclear spins
due to their weaker coupling strengths.

∗ rwalsworth@cfa.harvard.edu

Here, we report coherent spin exchange between two
identical electronic spins, a vital prerequisite for many
of the ideas discussed above, including the aforemen-
tioned collective phenomena [1–5]. A single NV center
acts as a nanoscale probe of flip-flop interactions between
a pair of electron spins. First, we identify a coherently-
coupled, three-spin cluster consisting of the optically-
active NV and two optically-dark electron spins inside
the diamond [Fig. 1(a)]. The coupling strengths and
resonance frequencies for the three spins are extracted
via optically detected magnetic resonance (ODMR) NV
spectroscopy, as well as dynamical decoupling and double
electron-electron resonance (DEER) experiments. The
electron spins undergo flip-flop dynamics, conditional on
the state of the NV [Fig. 1(b)], as in a controlled SWAP
gate. Finally, we demonstrate partial manipulation of
the three-electronic-spin cluster through selective cou-
pling and transfer of polarization between the NV and
the pair of electron spins.

FIG. 1. (a) Schematic of a three-electronic-spin cluster in
diamond, labeled with coupling strengths. (b) Energy level
diagram of two dipolar-coupled dark electron spins (each S =
1/2) as a function of the nearby NV spin state (S = 1). When
the NV is in the |−1〉NV spin state, the magnetic field gra-
dient it produces at the electrons suppresses their dynamics.
When the NV is in the |0〉NV spin state, flip-flops are allowed
between the electron spins.

Experimental results.—The unpolished diamond sam-
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FIG. 2. Spectroscopy of three electronic-spin cluster. (a)
Measured NV ESR spectrum (black circles), in the presence
of a B0 = 694.0(6) G static bias field, fit to three Lorentzian
curves (red line). The triplet-like structure is consistent with
the model and parameter values presented in this work. The
14N nuclear spin is polarized into the mI = +1 state due to
the large transverse NV-14N hyperfine coupling in the opti-
cally excited manifold [28, 29]. The estimate of the B0 field
is adjusted accordingly. Inset, NV ESR pulse sequence. (b)
DEER ESR spectrum data (black dots), in the presence of a
B0 = 694.0(6) G bias field, with numerical simulation from
equation (1) using parameter values given in the main text
(red line). Time τ is fixed to 3 µs. Observed lineshape is
qualitatively consistent with two electrons strongly coupled
to both each other and the probe NV. Inset, DEER ESR
pulse sequence.

ple features a 99.999% 12C epitaxially grown layer, im-
planted with 14N ions at 2.5 keV and annealed for eight
hours at 900 ◦C. A mask implantation was performed,
such that the density of implanted nitrogen varied from
close to zero to 1012/cm2 across the sample. Measure-
ments were performed using a custom-built confocal mi-
croscope with a 532 nm laser for NV excitation, and a
single photon counter to collect phonon sideband photo-
luminescence for population readout of the NV ground
state sublevels. A dual-channel arbitrary waveform gen-
erator enables coherent driving of the NV spin and two
additional electron spins in the diamond. The NV and
electron spin levels are split by a DC magnetic field
(B0 = 694.0(6) G) aligned along the NV axis and gener-
ated by a permanent magnet.

An electron spin resonance (ESR) measurement on the
NV reveals an atypical spectrum. Figure 2(a) illustrates
the atypical ESR spectrum containing a triplet-like struc-
ture, with splitting about a factor of 2.5 smaller than
the 14N hyperfine coupling [30]. Fitting the data to
three Lorentzian lineshapes demonstrates a full splitting
of 1.70(7) MHz.

To determine if this characteristic splitting is explained
by the presence of spins with electronic character, we se-
lectively drive the spins with resonances around γeB0, us-
ing a separate microwave channel (labeled DS for “dark
spin” in Figure 2(b), inset). When the DS drive fre-
quency approaches a resonance of an electron spin cou-
pled to the NV, the NV Bloch vector accumulates phase
in the transverse plane as in a Double-Electron-Electron-

Resonance spectroscopy (DEER ESR) experiment. With
a central dip around g = 2, the spectrum shows a char-
acteristic, asymmetric lineshape [Fig. 2(b)], for which
either nuclear quadrupolar spin(s) strongly coupled to a
single electron, or dipolar coupling(s) between multiple
electronic spins could be responsible.

Distinguishing between these possibilities requires a
study of the number of electronic spins present. In a
Spin Echo DOuble Resonance (SEDOR) pulse sequence
[1] [Fig. 3(a), bottom panel], a single electron spin in-
duces oscillations in the NV population, and hence the
ODMR signal, at the frequency of the NV-electron dipo-
lar coupling strength. However, the presence of multi-
ple electronic spins results in multiple frequencies, orig-
inating from the different coupling strengths (electron-
electron, NV-electron), as well as any coherent dynam-
ics. The resulting data exhibits several frequency compo-
nents [Fig. 3(b)], consistent with a coherently-coupled,
multi-electronic spin system [Fig. 1(a)]. Comparing the
observed Rabi frequencies of the NV and electronic spin
transitions confirms that the dark electron spins are S =
1/2 [31].
Model and Hamiltonian.—The triplet lineshape com-

ponents extracted from the NV ESR, as well as the fre-
quencies in the SEDOR measurement [Fig. 3(b)], are
well-described by a system of two electron spins coher-
ently coupled to the NV. The three-spin cluster is mod-
eled using the following Hamiltonian, in the secular ap-
proximation and frame rotating at the NV transition fre-
quency:

H
h

=
∑
i=1,2

(
ωi +Ai(S

NV
z + I/2)

)
S(i)
z +

J12

(
2S(1)

z S(2)
z − 1

2
(S

(1)
+ S

(2)
− + S

(1)
− S

(2)
+ )
)
. (1)

Here, −Aih = −µ0~2γ2e (3 cos2 θi − 1)/(4πr3i ) is the
magnetic dipole interaction strength between the NV
and electron i. The electron-electron coupling term
J12h = −µ0~2γ2e (3 cos 2θ12 − 1)/(8πr312) is half the mag-
netic dipole interaction strength between the electrons,
and ωi is the Zeeman energies of electron i. Note that
the |ms = +1〉 ≡ |+1〉NV state is not populated under the
experimental conditions employed in this work, reducing
the NV subspace to |0〉NV and |−1〉NV in equation (1).
Therefore, all of the operators are 2x2 spin matrices.

An analytical calculation of the SEDOR signal using
the Hamiltonian in equation 1 yields four characteristic
frequencies (labeled ∆1−4), which are functions of J12,
A1 − A2, and ω1 − ω2 [31]. We find good agreement be-
tween the SEDOR data and a sum of four sine waves (one
of which is below the spectral resolution of the current
experiment), multiplied by e−(t/T2)

p

to account for NV
decoherence [Fig. 3(b)]. To extract the parameter val-
ues, we associate the three resolved frequencies with the
predicted frequency-domain behavior from the model [31]
and solve for J12, ω1ω2 and A1−A2, obtaining an upper
bound on A1 +A2 from the unresolved frequency compo-
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FIG. 3. Coherent dynamics of the three-electronic-spin cluster. (a) Lowest panel: SEDOR pulse sequence schematic. Uppermost
panel: depiction of the electron dynamics corresponding to NV population in |0〉NV. Middle panel: electron spin evolution
corresponding to |−1〉NV. (b) Time-domain data (black circles and line) of the SEDOR experiment. The solid red line is a fit
to four sine waves multiplied by a decaying exponential (T2 = 14(3) µs, p = 1.1(4)). The frequencies from the fit are consistent
with the frequencies reported with the model and parameter values [31]. The period 2/∆1 corresponding to the electron flip-flop
dynamics is shown. Data was taken at 180 G. (c) Fourier transform of data from the SEDOR experiment performed with phase
modulation (TPPI) on the last NV π/2 pulse at a frequency ν = 1.25 MHz (black dots and line). The signal amplitudes for
each frequency pair about ν are equal, consistent with two unpolarized electron spins. Blue dots correspond to the frequencies
found in the fit in (b), up-converted by the TPPI frequency ν. Error bars (95% CI) from the fit are a factor of four smaller
than the diameter of the dots, except for the large dot at ν, for which the error is the size of the dot. The vertical red lines
represent frequency components ∆1−4 corresponding to the analytical solution using the model and parameter values reported
in the main text [31].

nent. We impose agreement with the observed NV ESR
and DEER ESR spectrum to confirm our solution and
inform the value of ω1, as well as the value of A1 + A2

[31]. The resulting parameter values reported here are
A1,2 = 0.81(5),−0.86(5) MHz; J12 = ±0.38(5) MHz;
ω1 = γeB0 + 0(2) MHz and ω2 = ω1 − 0.14(5) MHz [31].

As mentioned above, this model is also consistent with
the observed NV ESR and DEER ESR spectra [Fig. 2].
Two of the eigenstates of the electron pair, |↑↓〉, |↓↑〉,
each induce a dipolar magnetic field of strength ±(A1 −
A2)/2 = ±0.84(4) MHz, which consequently splits the
NV ESR lines. The two other electron pair states, |↓↓〉
and |↑↑〉, exert a field with strength ±(A1 + A2)/2 =
±0.03(4) MHz. The result is an NV triplet-like spectrum,
with splittings given by the difference of the NV-electron
couplings. As mentioned above, fitting the NV ESR data
[Fig. 2(a), black dots] to a sum of three Lorentzian curves
confirms the NV resonance frequencies, which are split by
1.70(7) MHz (95% CI of the fit), in good agreement with
the model parameters A1 −A2 = 1.67(7) MHz.

Conversely, the presence of multiple electrons corrupts
the direct measurement of individual transition frequen-
cies in the DEER ESR spectrum. The DEER ESR line-
shape depends sensitively on all coupling and resonance
frequency parameters [31], which we calculate numeri-
cally with the model. Using the same parameter values
listed above, we demonstrate good qualitative agreement
between the DEER ESR data [Fig. 2(b), black dots] and
the model [Fig. 2(b), red line], within the error ranges
on the extracted model parameters [31].

Coherent dynamics in the cluster.—An understand-
ing of the three-electronic-spin cluster allows for a dis-
cussion of the coherent dynamics between the electron

spins. When the |−1〉NV spin state is occupied, two
of the electron-pair energy levels, |↑↓〉 and |↓↑〉, dif-
fer by A1 − A2 + ω1 − ω2 = 1.81(9) MHz, which is
larger than their coupling strength J12 = ±0.38(5) MHz;
thus, flip-flops are suppressed [Fig. 1(c), top panel].
However, when the NV population occupies the |0〉NV
spin state, the same two energy levels are split by only
ω1 − ω2 = 0.14(5) MHz, allowing for polarization ex-
change [Fig. 1(c), bottom panel]. Direct diagonaliza-
tion of the Hamiltonian shows that flip-flops occur at
rate ∆1 ≡

√
J2
12 + (ω1 − ω2)2 = 0.41(5) MHz [Fig. 1(b),

bottom panel].

In the SEDOR pulse sequence, sweeping the free pre-
cession time τ and fixing the electron spin π-pulse on
resonance allows for quantitative observations of the flip-
flop frequency between the electrons. During the time
τ , the NV Bloch vector accumulates phase in the trans-
verse plane due to the dipolar field of the electrons, de-

scribed by the SNV
z S

(i)
z terms in equation (1). Since half

of the NV population is in the |0〉NV spin state through-
out this measurement, dynamics between the pair of elec-
trons are partially allowed [Fig. 3(a), top and middle
panels]. Sweeping the free precession time constitutes
an AC magnetometer, where the AC field amplitude of
0.84(4) MHz is generated by the pair of electrons in the
|↑↓〉 or |↓↑〉 states. The detected AC field frequency ∆1/2
is given by half the electron spin pair flip-flop rate [Fig.
3(a), top panel], and is marked in the time domain in
Figure 3(b). As constructed, the frequency components
of the SEDOR data implies ∆1 = 0.41(5) MHz, equal to
the value found with the model parameters [31].

In addition, the parameters A1 and A2 contribute to
other frequency components. During the SEDOR se-
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FIG. 4. Coherent polarization transfer between the NV and
two dark electron spins. (a) Observed polarization transfer
to the electrons at the Hartmann-Hahn resonance condition
[37] as a function of spin lock duration T (black circles).
Red line is a numerical simulation of the experiment pro-
tocol using equation (1) and the parameter values given in
the main text. The primary oscillation frequency of 0.60(5)
MHz, ' A1/

√
2 ' A2/

√
2, is consistent with the two similar

NV-electron coupling strengths adding in quadrature. Due to
microwave amplitude instability of the setup, we allow for a
detuning from the resonance condition up to 350 kHz. Ef-
fects not included in our model that contribute to the devi-
ation at short T are: slow drifts in this detuning, dephasing
of detuned driving of (weakly populated) hyperfine transi-
tions, and pulse errors of the initial NV π/2 pulse. Inset,
Hartmann-Hahn pulse sequence. (b) Observed polarization
transfer to the electrons using Hartmann-Hahn cross polar-
ization at fixed spin lock duration T = 700 ns, followed by
optical repolarization of the NV to |0〉NV, then readout of the
electron pair polarization via SEDOR. Results are displayed
as the FFT of the SEDOR data. The phase φ of the first NV
pulse determines the direction of polarization transfer. For
both directions, the polarization is shared across the three
frequency pairs, consistent with two coupled electron spins.
Inset, experimental pulse sequence.

quence, the other half of the NV population occupies
the |−1〉NV spin state, such that the electron-pair dy-
namics are suppressed by the field of strength A1−A2 =
1.67(7) MHz [Fig. 3(a), middle panel]. The eigenstates
of the relevant Hamiltonian HDS

−1 are mostly described by
the Zeeman |↑↓〉 and |↓↑〉 states, and are dressed by their
interaction, which shifts their energy splitting. These
states consequently modulate the SEDOR data at rate
1
2

√
(A1 −A2 + ω1 − ω2)2 + J2

12 ≡ ∆2/2 = 0.93(4) MHz,
equal to a frequency component observed in the SEDOR
data [31].

Throughout the pulse sequence, the NV is in a coher-

ent superposition of the |0〉NV and |−1〉NV spin states.
The resulting interference of both electron propagators
induces additional frequency components in the NV evo-
lution at half the sums and differences of ∆1 and ∆2

[31]. We find that the amplitude of the (∆1 + ∆2)/2
frequency component decreases via destructive interfer-
ence of the two propagator paths, due to the relative
detuning between the two electrons ω1 − ω2 [31]; sim-
ilarly, the amplitude of the (∆2 − ∆1)/2 ≡ ∆3/2 =
1
2 (
√

(A1 −A2 + ω1 − ω2)2 + J2
12−

√
J2
12 + (ω1 − ω2)2) =

0.72(2) MHz component increases [31]. As expected, the
fit to the SEDOR data also exhibits a frequency com-
ponent at 0.72(2) MHz [31]. Finally, irrespective of the
state of the NV, the states |↑↑〉 and |↓↓〉 modulate the
SEDOR signal at the frequency ∆4/2 ≡ (A1 + A2)/2.
For the present three-spin system, we estimate ∆4/2 =
−0.03(4) MHz, which is not distinguishable from zero for
the present experiment.

As a check of reproducibility, we repeat the SEDOR ex-
periment using a phase modulation technique [31], known
as time-proportional phase increments (TPPI) in nuclear
magnetic resonance, to up-convert the signals away from
zero frequency by ν = 1.25 MHz [1] [Fig. 3(c)]. The
Fourier transform of the TPPI data [Fig. 3(c), black line]
shows pairs of spectral peaks at frequencies correspond-
ing to ∆1−3, centered around the TPPI frequency ν; as
before, the ∆4 peaks are not resolved. The positive and
negative frequency components of each pair have approxi-
mately equal amplitude, consistent with unpolarized elec-
tron spins. The red lines corresponding to ∆1−4 in Figure
3(c) indicate the expected frequencies from model. The
frequency components from the fit of the time domain
data [Fig. 3(b)] are up-converted by ν and marked as
blue dots, and agree with the model within the margin
of error [31].

Manipulation of the electronic spins.—Finally, we
demonstrate coherent manipulation of the three-spin
cluster by transferring polarization from the NV to the
dark electron spin pair using a Hartmann-Hahn tech-
nique [37]. We first fix the amplitude of the drives to
the Hartmann-Hahn resonance condition [37], and trans-
fer polarization from the NV to the electron spins while
sweeping the spin lock duration T [Fig. 4(a)]. By match-
ing the dressed state energies of the NV and dark spins,
NV-dark spin flip-flops become allowed and the dark
spins are polarized. By energy conservation, the dark
spins are aligned parallel (anti-parallel) to the resonant
drive vector in the rotating frame, if the NV Bloch vector
is initialized parallel (anti-parallel) along the NV drive
vector. The polarization evolves from the NV and returns
at a rate approximately given by A1/

√
2 ≈ A2/

√
2, as ex-

pected for two uncorrelated electrons with approximately
equal coupling to the NV. Next, we observe polarization
of the dark electron spin pair by fixing the spin lock dura-
tion at T = 700 ns ≈ 1/|

√
2A1| ≈ 1/|

√
2A2|, re-polarizing

the NV with a 532 nm laser pulse, and reading out the po-
larization of the electron spins using SEDOR and TPPI.
Changing the phase of the first π/2 pulse on the NV,
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and therefore the initial NV dressed state, exchanges the
direction of polarization transfer [Fig. 4(b), orange and
purple lines]. Adding a π/2 pulse on the dark spins after
the spin lock pulse stores the dark spin polarization along
the quantization axis. For both polarization transfer di-
rections, the difference in peak amplitude is spread across
all pairs of frequencies ∆1−3 [Fig. 4(b)], as is expected
for a coupled pair of electrons. Compared to previous
work [18, 19], this constitutes a measurement of coherent
polarization transfer from the NV to electron spins, fol-
lowed by readout of the polarization, opening the door to
quantitative estimates of dark spin state preparation fi-
delities. Here, a careful study of the polarization fidelity
will require stringent microwave amplitude stability dur-
ing a two-dimensional sweep of T and τ , beyond the scope
of this work.

Outlook.— Our observations of coherent dynamics be-
tween nearby electronic spins in the solid state, under
ambient conditions and without spectrally or spatially
resolved spins, constitutes a key step toward realizing co-
herent quantum manipulation of electronic spins. Specif-
ically, the demonstrated techniques can be used to imple-
ment quantum registers with fast gate time and quantum
state transfer between remote spins via an intermediate
spin bath [9–12]. Additionally, electronic spin dynam-
ics external to an NV could enable a range of potential

sensing applications. For example, it can be employed
following a recent proposal to measure the spin diffusion
rate between intra-molecular spin labels in biomolecules
[13, 14], to obtain improved distance measurements be-
yond the standard DEER protocol [38, 39].
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