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Accessing new regimes in quantum simulation requires development of new techniques for quantum
state preparation. We demonstrate quantum state engineering of a strongly-correlated many-body
state of the two-component repulsive Fermi-Hubbard model on a square lattice. Our scheme makes
use of an ultra-low entropy doublon band insulator created through entropy redistribution. After
isolating the band insulator, we change the underlying potential to expand it into a half-filled system.
The final many-body state realized shows strong antiferromagnetic correlations and a temperature
below the exchange energy. We observe an increase in entropy, which we find is likely caused by the
many-body physics in the last step of the scheme. This technique is promising for low-temperature
studies of cold-atom-based lattice models.

PACS numbers: 37.10.De, 37.10.Jk, 67.85.Lm, 71.10.Fd

Understanding and controlling complex many-body
quantum physics is an important research frontier in
quantum information, condensed matter physics, and
quantum chemistry. Quantum simulation has emerged
as a powerful tool for computing many-body quantum
phases and dynamics, with the potential to exceed sim-
ulations on classical computers [1, 2]. By engineering
highly coherent many-body systems, a wide variety of
Hamiltonians can be studied [3]. A unique platform for
scalable quantum simulation is ultracold atoms, where
the development of quantum gas microscopy has enabled
control at the single atom level [4, 5]. Quantum simu-
lation extends to other promising platforms such as ion
traps, superconducting circuits, solid state systems, Ry-
dberg atoms, and photonic systems [6–11].

A major challenge of all these platforms is creating a
coherent quantum many-body state, which is often the
ground state. Traditionally, cold atom experiments in op-
tical lattices realize quantum states by loading an evap-
oratively cooled quantum gas into the lattice potential
[12]. This approach has been very successful [13–15],
but the minimum achievable temperatures for fermionic
systems are limited by reduced cooling efficiency at low
temperatures. An alternative approach is quantum state
engineering. Generally, this method realizes an isolated
pure quantum state by initializing one wavefunction un-
der an initial Hamiltonian, then changing the Hamilto-
nian while preserving coherence during time evolution so
that the accompanying wavefunction becomes the target
state (see Fig. 1). Several platforms have used different
versions of quantum state engineering to create desired
quantum states [16–20], and schemes have been proposed
for ultracold fermionic atoms [21–23]. The site-resolved
readout and control afforded by quantum gas microscope
experiments [4, 5, 24–31] are perfect tools to implement
quantum state engineering of many-body states of ultra-
cold fermionic atoms in optical lattices.

Here we demonstrate quantum state engineering for
a many-body state of fermionic atoms in the Hubbard
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FIG. 1. (color online). Illustration of the quantum state en-
gineering scheme. (Top row) A low-density metallic state re-
moves entropy from a band insulator (BI), after which the
two states can be isolated thermally. The BI can then be
ramped into an antiferromagnetic (AFM) state by increasing
the number of available sites. (Middle row) Map of density
inhomogeneity and states in our experimental setup. (Bot-
tom row) We implement our scheme by engineering optical
potential landscapes to change the Hamiltonian at each step
(see main text and [32]).

model. This model describes spin-1/2 fermions on a
lattice with nearest-neighbor tunneling t and repulsive
on-site interaction U . Under this model, a coexistence
of phases can be realized through inhomogenous parti-
cle density in global thermal equilibrium [34]. A metal
exists at low particle density, characterized by a large
density of states and high entropy per particle. At half-
filling (one particle per site), an antiferromagnet emerges,
where spins arrange in an alternating pattern. This phase
is gapped in the charge sector by U , but has nonzero
density of states due to low-energy spin excitations. The
band insulator (BI) appears when the band is completely
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filled with two particles per site, and thus has a large
energy gap equal to the bandgap, vanishing density of
states, and vanishing entropy per particle. Because of
the differing density of states, under fixed global atom
number and global entropy the density inhomogeneity
can be engineered to produce low-entropy states.

If a BI and metal are in thermal contact, entropy
flows from the BI into the metal, see Fig. 1. By us-
ing a fully gapped state, we optimize this entropy re-
distribution technique [13, 21, 22, 26]. The result is an
ultra-low entropy BI initial state with an entropy per
particle as low as 0.016(3) kB in units of the Boltzmann
constant, over an order of magnitude lower than the low-
est value previously achieved with entropy redistribution
[26]. In the next step we thermally isolate the low-
entropy region by suppressing particle transport between
the BI and reservoir. Finally, we convert the gapped BI
into a strongly-correlated many-body state at half-filling.
This final state has a nearest-neighbor spin correlator of
C1 = −0.21(1) reflecting strong antiferromagnetic char-
acter and a temperature of kBT/t = 0.46(2).

Our experimental setup consists of a balanced spin
mixture of the two lowest hyperfine states of fermionic 6Li
in a combined square optical lattice and blue-detuned po-
tential. We set t/h = 0.89(1) kHz in units of the Planck
constant and U/t = 7.7(3) or U/t = 5.9(2) [32]. The
quantum gas lies in the object plane of a quantum gas
microscope [32], allowing both atom imaging and poten-
tial control at the site-resolved level [33]. Such precise
control is achieved by placing two digital micromirror
devices (DMD1 and DMD2) in the image plane and pro-
jecting their patterns with blue-detuned light [32]. The
DMD1 pattern is designed to engineer the coexistence of
phases through changing the optical potential and there-
fore particle density across the sample, as in [26]. DMD2
creates the isolating wall in the second step of our scheme.

The success of quantum state engineering schemes fun-
damentally depends upon initial state preparation. The
initial density distribution consists of two regions of con-
stant but different density: the doublon-filled center and
the surrounding metallic reservoir (see Fig. 2a), created
with DMD1 by setting the potential offset between the
two regions to ∆ ≈ 2U . Following entropy redistribu-
tion we achieve an ultra-low entropy BI of more than 130
sites. Due to light-assisted collisions which occur during
the imaging process, sites initially containing doublons
appear as empty [33]. We obtain the entropy per parti-
cle on a single site from the measured singles density ns
[32]. The average singles density ns across the BI region
is 0.4(1)%, corresponding to an upper bound for the aver-
age entropy per particle across the region of 0.016(3) kB.
This signifies a 50-fold reduction in entropy compared
to a homogenous system, showing that the technique is
highly efficient [32]. This entropy is significantly lower
than that of the lowest-entropy two-component BIs real-
ized in cold-atom systems thus far [25, 34].
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FIG. 2. (color online). Ultra-low entropy BI at U/t = 7.7(3).
(a) Raw fluorescence image of single BI, optical potential
schematic, and average density map of 50 BI realizations.
Through entropy redistribution, we create a BI with > 130
sites and average entropy per particle 0.016(3) kB. Error bars
denote standard error of 50 measurements and azimuthal av-
eraging. (b) By continuously tuning the optical potential be-
tween a harmonic trap and our entropy redistribution pattern
at constant BI size at U/t = 5.9(2), we see a decrease in BI en-
tropy due to increased entropy redistribution efficiency. The
final pattern yields a slightly higher entropy than the opti-
mum, but is necessary for our scheme. Error bars denote
standard error of >20 measurements each with 133 lattice
sites.

Most cold atom experiments take place in a har-
monic trap, where some entropy redistribution is al-
ready present because of inhomogenous particle density.
We compare entropy redistribution efficiencies between
a harmonic pattern and the employed pattern for quan-
tum state engineering by interpolating linearly between
these two profiles, parameterized by the fraction f . Atom
number, total entropy, and BI size are kept constant. As
shown in Fig. 2b, entropy redistribution reduces the BI
entropy per particle by more than a factor of 3 compared
to the harmonic trap, even for a pattern which has not
been optimized for redistribution efficiency as in Fig. 2a.
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We find a slight increase in entropy moving to the final
pattern, which may result from a denser reservoir or from
a loss of thermal contact between the system and reser-
voir. Indeed, the f = 1 pattern exhibits a ring of zero
density between these two regions. This ring is neces-
sary in the next step of the quantum state engineering
scheme.

After initializing the low-entropy BI, the next step is
to isolate it from the remaining atoms. We adjust the
entropy redistribution pattern such that the BI is sur-
rounded by holes, see Fig. 3a. To ensure full isolation of
the BI, we subsequently raise a circular wall with a thick-
ness of about 3 sites using DMD2 [32]. We set the wall
diameter to a value larger than the BI size. The region Ω
inside the wall therefore contains both the BI and empty
sites. For the shape of the BI we choose either a circular
12-site diameter disk (similar to the f = 1 configuration)
or a rectangular 8-site by 12-site box. Both regions in
Ω are approximately homogenous in density with energy
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FIG. 3. (color online). (a) Average density map (40 realiza-
tions) and configuration of entropy redistribution at U/t =
5.9(2) after isolation. Imperfections in the optical potential
manifest as singly-occupied sites, as seen at the upper edge
of the box. (b) Average density map of 41 images after ramp
highlighting how the insulating wall separates the inner and
outer regions, with initialization via disk pattern. (c) Corre-
sponding density and nearest-neighbor correlator profiles vs.
radius after ramp. The nearest-neighbor correlations are an-
tiferromagnetic with a strength of up to C1 = −0.21(1). A
simultaneous fit to both profiles (solid line) gives a temper-
ature of kBT/t = 0.46(2). The fit is limited to radius 9,
to avoid effects from the insulating wall. Error bars denote
standard error of >40 sets of correlation maps and azimuthal
averaging. For (b)+(c), U/t = 7.7(3).

offset ∆ ≈ 2U . To ensure the two regions have the de-
sired densities, we set the global chemical potential inside
Ω to a value below ∆ by adjusting the total atom number
[32].

For the box-shaped configuration (see Fig. 3a), the en-
tropy per particle within Ω is 0.25(1) kB. This entropy is
greater than that of the pure BI because it includes both
doublon and hole regions; indeed, the pure BI entropy per
particle away from the box edge is only 0.08(1) kB, so the
greatest entropy contribution to Ω is from the boundary
between the regions. More specifically, if the box po-
tential is not perfectly aligned with the lattice sites, the
potential offset on sites close to the edge can be modified.
Even if the box is aligned, the microscope point spread
function smooths the potential across one or two lattice
sites. These effects lead to density defects on both sides
of the box edge that are visible as singly-occupied sites
and increased entropy, see for example the upper box
edge in Fig. 3a. The ring-shaped wall has a negligible ef-
fect on initial entropy, confirmed through comparing the
entropy with and without the wall.

The final step in our quantum state engineering scheme
is to convert the initial state into the target many-body
state. For this measurement we use the disk pattern for
the BI to reduce alignment sensitivity. To ensure half-
filling in the final state, the wall diameter is set such
that the number of holes and doublons within Ω is ap-
proximately equal. After initialization and isolation we
slowly remove the potential offset between holes and dou-
blons by reducing the DMD1 laser power [32]. In Fig. 3b
we show the measured singles density ns after a 40ms
linear ramp of the potential offset. The atomic density
extends over the entire region Ω and sharply decreases at
the inner edge of the wall, indicating particle transport
has occurred from the doublon core to the surrounding
empty sites. The inner and outer regions are separated
by the insulating wall, marked by a ring of empty sites.
In the final state, atoms in Ω are expected to show an-
tiferromagnetic correlations, whose strength reflect the
adiabaticity of the ramp. The nearest-neighbor spin cor-
relations, measured with a technique established in previ-
ous work [35], are strongly antiferromagnetic with values
up to C1 = 4〈Ŝz

i Ŝ
z
i+1〉 = −0.21(1). Here Ŝz

i denotes the
standard spin-1/2 operator along the z-direction on site i.
These observations demonstrate a successful implemen-
tation of quantum state engineering, where a strongly-
correlated many-body state is created from an initially
uncorrelated BI of doublons.

Locally changing density and spin correlations within
Ω originate from the underlying harmonic confinement
created by the lattice lasers. The maximum in the singles
density radial profile indicates the density is above half-
filling in the center and continuously decreases for larger
radii, see Fig. 3c. We intentionally keep this confinement
to study whether the system is in thermal equilibrium.
When applying a simultaneous fit of exact theoretical
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predictions to both measured radial profiles with shared
fit parameters, we find reasonable agreement [35, 36].
This shows that the system within Ω is consistent with a
thermal equilibrium state. In order to determine whether
deviations from thermal equilibrium or finite-size effects
are present, more detailed knowledge of corrections to
the exact confinement potential is required.

From the fit we obtain a temperature in Ω of
kBT/t = 0.46(2), which is comparable to the temper-
atures achieved so far in harmonic traps [31], but still
higher than the lowest value of kBT/t = 0.25(2) achieved
with entropy redistribution [26]. Although this temper-
ature is surprisingly low given the simple ramp scheme
used here, the system is still far from the ground state.
Besides the nonzero entropy of the initial BI, this nonzero
temperature may result from non-adiabaticity of the
ramp or residual heating. We now explore both possi-
bilities.

We first study non-adiabaticity by examining the en-
tropy increase after completing and reversing the offset
ramp [32]. For this measurement we use the box pattern
for the lowest initial entropy in Ω. As heating effects
are negligible in the initial state, a perfectly adiabatic
process implies measuring the same entropy as this ini-
tial state. When varying the endpoint of the ramp ∆f ,
we find that the entropy per particle increases steadily as
the ramp endpoint decreases, see Fig. 4a. The qualitative
shape of the curve suggests a lack of adiabaticity largely
throughout the second half of the ramp. In this regime,
∆ ≈ U and particles can freely tunnel out of the dou-
blon core. For the full two-way ramp, we find an entropy
increase of 0.46(2) kB. Although this increase strongly in-
dicates a non-adiabatic ramp, it may actually be caused
by greater heating rates during the ramp, for example
due to changes in the many-body energy spectrum.

To distinguish heating during the ramp from non-
adiabaticity, we measure the heating rate for each ramp
endpoint by holding for a variable time τh before revers-
ing the ramp and measuring the resulting entropy [32].
Heating rates are generally greater than the initial heat-
ing rate, with values up to 2.1(2) kB/s, see Fig. 4b. The
observed increase in heating rate at ∆ ≈ U indicates
a drastic change in the many-body energy spectrum,
as already suggested by the non-adiabaticity measure-
ment of Fig. 4a. From the measured rates, we estimate
an entropy increase from heating of 0.06 kB for the full
ramp. This indicates that the majority of entropy in-
crease does not originate from heating, but rather from
non-adiabaticity. When decreasing the ramp rate for the
full two-way ramp, the final entropy increases, indicat-
ing that any improvement in adiabaticity is insufficient
to overcome heating during the additional ramp time.

Despite the non-adiabaticity, achievement of low tem-
peratures with such a simple ramp scheme is encourag-
ing. A possible improvement is to reduce the amount of
required particle transport, which may reduce the non-

adiabaticity. We repeat the adiabaticity measurement
for an initial system consisting of alternating stripes of
holes and doublons surrounded by a box-shaped wall, see
bottom right panel of Fig. 4a. While the initial entropy
is worse than that of the box due to the more complex
potential landscape, crucially this configuration yields
no significant improvement in entropy increase. This
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FIG. 4. (color online). Examining final ramp adiabaticity
at U/t = 5.9(3). (a) A round trip measurement beginning
with an isolated box of doublons surrounded by holes demon-
strates non-adiabaticity predominantly in the second half of
the offset ramp-off (circles). Adiabaticity is not significantly
improved by initializing the holes and doublons in stripes (di-
amonds). Horizontal lines with shading indicate reference
measurements and uncertainty, taken with no ramp. Lower
panels show schematic images for the particle density n and
measured average singles density maps for the box (left) and
stripe (right) configurations at different times throughout the
round-trip ramp. Dashed lines indicate the wall inner edge,
while dotted lines enclose BI regions. Error bars are smaller
than the markers, and denote standard error of 40 (187) mea-
surements for the box (stripe) pattern. (b) We quantify heat-
ing rates at various points throughout the ramp (upper left),
which enable us to approximate the contribution of entropy
increase due to heating. Error bars for entropy measurements
(right) denote standard error of 5 measurements; error bars
for heating rates (lower left) are from the fits.
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suggests that the dominant reason for non-adiabaticity
lies within the many-body physics occurring during the
ramp, which strongly depends on how the ramp is imple-
mented and what intermediate phases are crossed [37–
39]. An improvement could be to avoid a closing charge
gap in the many-body spectrum during the ramp, possi-
bly by using a double-well superlattice. Such a configura-
tion has been predicted to be very efficient in numerical
simulations [23, 40].

In conclusion, we have implemented a quantum state
engineering scheme to create a fermionic many-body
state. Through adjusting the initial balance of doubly-
occupied and unoccupied sites, this technique offers the
flexibility to vary the doping of the sample on the single-
atom level. Furthermore, the remarkably low initial en-
tropies afforded by entropy redistribution may enable
even lower temperatures at arbitrary doping to search
for signatures of a d-wave superfluid state [41]. However,
additional studies must be conducted to determine the
optimum path in parameter space which minimizes the
entropy. Analogous quantum state engineering schemes
can be designed for studies of stripe phases with strongly
magnetic atoms, massively entangled spin states, and
adiabatic quantum computation [42–44].
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