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Machine learning is actively being explored for its potential to design, validate, and even hybridize
with near-term quantum devices. A central question is whether neural networks can provide a
tractable representation of a given quantum state of interest. When true, stochastic neural networks
can be employed for many unsupervised tasks, including generative modelling and state tomography.
However, to be applicable for real experiments such methods must be able to encode quantum mixed
states. Here, we parameterize a density matrix based on a restricted Boltzmann machine that is
capable of purifying a mixed state through auxiliary degrees of freedom embedded in the latent space
of its hidden units. We implement the algorithm numerically and use it to perform tomography on
some typical states of entangled photons, achieving fidelities competitive with standard techniques.

Introduction - Quantum materials, matter, and de-
vices have highly complex features that can make de-
scribing the correlations between particles challenging,
even for the world’s most powerful computers. Classi-
cal algorithms have been instrumental in the design and
characterization of quantum systems, ranging from the
scale of few-body molecules and devices, up to many-
body atomic and condensed matter. However, to be suc-
cessful in reproducing the behavior of even a small num-
ber of qubits, such algorithms may require a very large
amount of classical resources, a fact which presents a con-
tinuing challenge for modern quantum sciences.

For the moderately small number of qubits presently
manipulated in laboratories, one can imagine optimizing
a classical model with the most efficient means currently
available to today’s conventional hardware, in such a way
that a faithful representation of a generic quantum state
is produced. Machine learning (ML) of graphical mod-
els, based on neural networks with a latent space formed
by hidden variables, provides one of the most practical
routes to achieving this. Here, the task of reducing the di-
mensionality of the Hilbert space is conceptually similar
to identifying relevant (low-dimensional) features hidden
within a higher-dimensional data set [1]. Modern algo-
rithms for ML are sufficiently advanced to allow neural
network models to be learned in a reasonable time, from
real data sets obtained from measurements of present-day
experimental or synthetic quantum systems.

Recently, a number of authors have demonstrated that
a type of stochastic neural network, called a restricted
Boltzmann machine (RBM), can be used to capture var-
ious properties of many-body systems. These include the
thermodynamics of spin models [2], ground state and
dynamical properties of interacting quantum spins [3],
quantum non-locality [4], and quantum error correc-
tion [5] for example. The underlying representational
power of such networks is currently under intense the-
oretical investigation [6–11]. Numerically, RBMs have
been successfully trained, using standard ML techniques,
to faithfully represent a variety of quantum many-body
wavefunctions, for numbers of qubits ranging into the

hundreds. In Ref. [12], it was demonstrated how an
RBM with hidden units could be used to perform quan-
tum state tomography, by learning to represent a pure
many-body wavefunction within its network parameters,
trained from a finite-size set of measurement data.

However, in realistic applications in the laboratory,
quantum states are difficult to isolate, and are often en-
tangled to the environment. Hence, the purity of the
underlying system cannot be assumed, and tomography
must generally be performed on states with unknown
mixing. In this paper we extend the concept of pure
state tomography with RBMs [12], to the more general
class of mixed states described by density matrices. The
resulting graphical model, which we call a Neural Den-
sity Operator (NDO), is obtained by purifying the mixed
state of the physical system through additional auxiliary
degrees of freedom, embedded in the latent space of hid-
den variables in the neural network. Upon tracing out
the hidden variables, the network becomes a representa-
tion of the density matrix. We derive a generalization of
the most effective known training algorithm for RBMs,
which minimizes a Kullbach-Leibler divergence through
contrastive divergence. Then, we implement our algo-
rithm numerically, and demonstrate that it is able to re-
construct the density matrix of an unknown quantum
state by training a NDO on a set of measurements. As
an example, we illustrate the state reconstruction algo-
rithm on real experimental data, for a simple case of two
entangled photons.

Neural density operators - We consider the state
of a quantum system comprising N degrees of freedom,
characterized by a density operator ρ with matrix ele-
ments ρ(σ,σ′) = 〈σ|ρ|σ′〉, in an (arbitrary) reference
basis σ ≡ (σ1, . . . , σN ). For simplicity, we restrict our-
selves to the case of a 2-dimensional local Hilbert space
σj = {0, 1} (e.g. 1

2 -spins, hard-core bosons, qubits, etc.).
When the system is in a pure state, the density operator
assumes the simple form ρ = |ψ〉〈ψ| given by the wave-
function |ψ〉 =

∑
σ ψ(σ)|σ〉. In this case, as shown by

Carleo and Troyer [3], any quantum state has an RBM
representation |ψθ〉, where the wavefunction is encoded
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into a set of internal parameters θ of a neural network
(the number of which generally grows exponentially for
a generic quantum state). The encoded state is then
a highly non-linear function which returns a complex-
valued coefficient ψθ(σ), for any input state |σ〉. The
optimal set of parameters which best approximates the
wavefunction is found by training the neural-network
with a “learning” procedure. For example, this could be
the variational minimization of the total energy [3, 13].
Alternatively, training can occur via standard machine
learning procedures, if an appropriate data set is avail-
able [12]. Depending on the complexity of the state to
be encoded, different numbers of network parameters will
be required, which naturally quantifies a convergence pa-
rameter for the algorithm.

In analogy to this, we define the NDO as a mapping
ρθ that, given two input states |σ〉 and |σ′〉, returns
the matrix element ρθ(σ,σ′). For a NDO to describe
a physical state, its matrix representation must have
unit trace Trσ{ρθ} = 1, must be hermitian ρθ = ρ†θ,
and be positive semi-definite 〈x|ρθ|x〉 ≥ 0 ∀|x〉. These
constraints can be satisfied by constucting the NDO
from the purification of its Hilbert space with a system
of na auxiliary degrees of freedom a = (a1, . . . , ana

),
so that its composite state ρσ⊕aθ is pure, and there-
fore ρσ⊕aθ = |ψθ〉〈ψθ|, with a neural network wave-
function |ψθ〉 =

∑
σa ψθ(σ,a)|σ〉 ⊗ |a〉. The NDO is

then simply obtained by tracing out the auxiliary system
ρθ = Tra{|ψθ, 〉〈ψθ|}, obtaining the density matrix

ρθ(σ,σ′) =
∑
a

ψθ(σ,a)ψ∗θ(σ′,a). (1)

While the nature of the auxiliary system is arbitrary, a
RBM provides a very convenient method for encoding
both the physical and auxiliary degrees of freedom. A
standard RBM contains two layers of stochastic binary
units, a visible or physical layer, and a hidden or la-
tent layer h. The two layers are connected by a set of
weighted edges, and each unit is also coupled to an ex-
ternal field (or bias). Here, we embed the auxiliary units
used for the purification in the hidden layer of the neural
network, which is thus enlarged to (h,a). The RBM as-
sociates to this graph structure a Boltzmann probability
distribution pθ(σ,a,h), where the network parameters
are θ = {Wθ,Uθ, bθ, cθ,dθ} (see Fig. 1). The distribu-
tion describing the composite (pure) system is obtained
by integrating out the hidden variables h:

pθ(σ,a) = e
∑

i log(1+eW
[i]
θ
σ+c

[i]
θ )+a>Uθσ+b>θ σ+d>θ a (2)

with W [i]
θ and c[i]

θ the i-th row of the weight matrix and
hidden field. We define the quantum state of the com-
posite system using two sets of parameters θ = (λ,µ)
describing amplitudes and phases respectively:

ψλµ(σ,a) = Z
− 1

2

λ

√
pλ(σ,a)eiφµ(σ,a) (3)
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Figure 1. Graphical representation of the neural density oper-
ator. The visible layer (green) encodes the state of the phys-
ical system σ, while the other two layers are used to describe
the mixing due to the environment (red), and to capture the
correlations between the physical degrees of freedom (blue).

where φµ(σ,a) = log pµ(σ,a)/2 and Zλ =∑
σa pλ(σ,a) is a constant enforcing normalization.
Since the auxiliary units are embedded in the latent

space of the network, we can perform the summation in
Eq. (1) exactly, obtaining ρλµ = Z−1

λ ρ̃λµ with unnor-
malized matrix elements

ρ̃λµ(σ,σ′) = eΓ
[+]
λ (σ,σ′)+iΓ[−]

µ (σ,σ′)+Πλµ(σ,σ′) (4)

Here we have introduced the matrices

Γ
[±]
θ (σ,σ′) =

1

2

[∑
i

log(1 + eW
[i]
θ σ+c

[i]
θ )

±
∑
i

log(1 + eW
[i]
θ σ

′+c[i]θ ) + b>θ (σ ± σ′)
]
(5)

and

Πλµ(σ,σ′) =
∑
k

log

(
1 + exp

[
1

2
U

[k]
λ (σ + σ′)

+
i

2
U [k]
µ (σ − σ′) + d

[k]
λ

])
.

(6)

Note in particular, the two weights matrices Uλ and Uµ
encode the mixing of the physical system with the auxil-
iary system. In the case where both are set to zero, the
state ψθ(σ,a) becomes separable and the resulting NDO
describes a pure state.

Before we turn to the machine learning procedure that
allows us to reconstruct a physical state, let us further
examine the RBM parameterization of the density ma-
trix. First, note that given a NDO ρλµ, it is possible
to compute the expectation value of any observable O
acting on the physical degrees of freedom |σ〉, provided
its matrix representation Oσσ′ is sparse in that basis (i.e.
the number of non-zero elements scales sub-exponentially
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with N). This can be done simply by considering the ob-
servable O ⊗ Ia on the composite system:

〈O〉 = Trσ{ρλµO} = 〈ψλµ|O ⊗ Ia|ψλµ〉
=
∑
σσ′

∑
a

ψλµ(σ,a)ψ∗λµ(σ′,a)Oσ′σ

=
∑
σa

|ψλµ(σ,a)|2
∑
σ′

ψ∗λµ(σ′,a)

ψ∗λµ(σ,a)
Oσ′σ

(7)

Therefore, one can approximate the expectation value of
O with a Monte Carlo average of the observable

OL(σ,a) =
∑
σ′

√
pλ(σ′,a)

pλ(σ,a)
ei(φµ(σ,a)−φµ(σ′,a))Oσ′σ

(8)
over a collection of samples drawn from the distribution
|ψλµ(σ,a)|2 = Z−1

λ pλ(σ,a). The sparsity of Oσσ′ en-
sures that we can perform the summation in Eq. 8 ef-
ficiently. This type of sampling is natural in an RBM
(a stochastic neural network) because of its special ar-
chitecture with edges connecting units between different
layers only. One can show that sampling the distribu-
tion pλ(σ,a) is equivalent to sampling the conditional
distributions pλ(σ |h,a), pλ(h |σ) and pλ(a |σ), which
do not require the knowledge of the normalization con-
stant. Furthermore, each of these conditional distribu-
tions factorizes over the unit of the corresponding layer,
thus enabling one to sample all the units simultaneously.

Quantum state reconstruction - Let us now con-
sider the problem of reconstructing an unknown quan-
tum state % from a set of experimental measurements.
In contrast to other quantum state tomography tech-
niques, which extract the elements of the density ma-
trix from the averages of a set of measured observables,
we consider instead a collection of raw density mea-
surements σb = (σb11 , . . . , σ

bN
N ) in a set of Nb bases

b = (b1, . . . , bN ). Given a basis b, the measurements
are distributed according to the probability distribution
P (σb) = %(σb,σb). The goal for the training of the neu-
ral network is then to find the set of parameters (λ∗,µ∗)
such that the NDO approximates the target density ma-
trix ρλ∗µ∗ ∼ %. The optimal values are discovered by
minimizing the divergence between the probability dis-
tributions imposed by ρλµ and %, which is expressed in
term of the sum of Kullbach-Leibler (KL) divergences in
each basis, Ξλ,µ =

∑
bKLλ,µ(b), where

KLλ,µ(b) =
∑
σb

P (σb) log
P (σb)

ρλ,µ(σb,σb)
. (9)

Rather than performing the average over the distribu-
tion P (σb) which is unknown, we approximate Ξλ,µ by
averaging over the experimental available data. Assum-
ing we have datasets Db containing ||Db|| snapshots
σb in various bases b, the total divergence becomes

Ξλ,µ ∼ H(P ) + 〈Lλ,µ〉, where H(P ) ∝ ∑b〈P logP 〉Db
is a constant entropy term, and

〈Lλ,µ〉 = −
∑
b

||Db||−1
∑
σb∈Db

log ρλ,µ(σbk,σ
b
k) (10)

is the negative log-likelihood averaged over the data, rel-
evant for the optimization. Each iteration of the training
consists into updating the network parameters θ accord-
ing to an optimization algorithm, the simplest one being
stochastic gradient descent:

θ ← θ − η∇θ〈Lλ,µ〉D`
(11)

where the gradient step η is called learning rate, and
the average negative log-likelihood is estimated over a
random subset of training samples D` ∈

⋃
bDb.

In order to take the derivative of Eq. (10), we first
need to rotate the density operator back into the origi-
nal reference basis σ via the relation ρbλ,µ = Ubρλ,µU†b.
The matrix Ub is simply given by the product of unitary
matrices Ub(σ[b],σ) =

⊗
j Ubj , each performing a local

change of basis Ubj = 〈σbjj |σj〉 [12]. The gradients of the
average negative log-likelihood 〈Lλ,µ〉D with respect to
the network parameters become

∇λ〈Lλ,µ〉D = −
∑
b

||Db||−1
∑
σb∈Db

〈∇λΓ
[+]
λ +∇λΠλµ〉Q

σb

− 〈∇λ log ρ̃λ,µ(σ,σ)〉ρλ,µ

(12)

and

∇µ〈Lλ,µ〉D = −i
∑
b

||Db||−1
∑
σb∈Db

〈∇µΓ[−]
µ +∇µΠλµ〉Q

σb

(13)
The averages

〈O〉Q
σb

=

∑
σσ′ Qσb(σ,σ

′)O(σ,σ′)∑
σσ′ Qσb(σ,σ

′)
. (14)

with respect to the quasi-probability distributions
Qσb(σ,σ

′) = Ub(σb,σ)ρλ,µ(σ,σ′)U∗b (σb,σ′) can be
evaluated directly on the samples in the datasets, with
the double summation running over 4t terms for a basis
b where there are only t local unitaries Ubj 6= Ij . On the
other hand, the average of the log-probability over the full
model probability distribution 〈∇λ log ρ̃λ,µ(σ,σ)〉ρλ,µ

appearing in Eq. (12) requires the knowledge of the nor-
malization constant Zλ and can be computed exactly
only for very small system sizes. For larger N , it is pos-
sible to approximate this average by running a Markov
chain Monte Carlo on the distribution ρλ,µ(σ,σ). In-
stead of reaching equilibrium at each training iteration,
the chain is initialized with a training sample and statis-
tics are collected after few sampling steps, resulting into
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Figure 2. Comparison of the reconstruction fidelities between
NDO and MaxLi tomography for a Bell state |Φ+〉 undergo-
ing a depolarizing channel with strength pdep. We show the
scaling of the fidelity as a function of the number of mea-
surements per basis NS for two different choices of network
structure (each point is plotted with standard deviation error
from an average over 100 realizations of the dataset).

a fast learning procedure. The algorithm, called con-
trastive divergence [14], has been widely used for unsu-
pervised pre-training of large deep neural networks [15–
17].

Results - Let us now demonstrate the NDO
parametrization and reconstruction for entangled pho-
tonic states, focussing on small systems where the prob-
lem is tractable. The tomographic reconstruction of the
density matrix for such states is widely used in a variety
of tasks. These include the characterization of optical
processes [18], detectors [19], and the tests of local re-
alism of quantum mechanics [20, 21]. We consider the
case of 2 qubits, setting the number of hidden units to
nh = 1, and initialize the weights with a uniform distri-
bution centered around zero with width w = 0.01 (and
biases set to zero). The network parameters are updated
using AdaDelta optimization algorithm [22] over train-
ing batches containing 10 samples, and the best network
is discovered by choosing (λ∗,µ∗) for which the aver-
age log-likelihood is maximum. We quantify the per-
formance of the reconstruction by computing the fidelity
between ρλ∗µ∗ and the target density operator %, defined
as F = Tr{√√ρλ∗µ∗%√ρλ∗µ∗}. The various sources of
error are discussed in the Supplementary Materials.

We first consider the ideal situation where the only
fluctuations in the measurement outcomes are of statis-
tical nature. Thus, we generate a synthetic dataset using
the exact target quantum state %. We choose to recon-
struct the Bell state |Φ+〉 = (|00〉 + |11〉)/

√
2 undergo-

ing a depolarizing channel, where we introduce a con-
trollable amount of mixing through the channel strength
pdep. The mixed state is described by the density matrix
% = (1−pdep)|Φ+〉〈Φ+|+pdepI/4, where we have the pure
state |Φ+〉 for pdep = 0 and the maximally mixed state
I/4 for pdep = 1. We build the datasets by measuring
the system in the Nb = 9 bases {σi0, σj1} with j = x, y, z.
Further, we generate multiple datasets with a different
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Figure 3. Real and imaginary part of the reconstructed NDO,
trained on experimental coincidence counts for the 2-qubit
state |Ψ〉 = 1√

2
(|00〉 + i|11〉).

number NS of measurements per basis (each containing
2 bits of information). We report in Fig. 2 the fideli-
ties obtained after training the NDO for three different
depolarizing strengths and an increasing number of mea-
surements per basis. We compare our results with the
fidelities obtained with standard Maximum Likelihood
(MaxLi) tomography [23, 24]. We observe slightly better
fidelities when using two auxiliary units (Fig. 2a), while
the NDO with na = 1 is not capable of purifying the
state of the physical system (Fig. 2b).

Finally, we consider real experimental data, where un-
known sources of noise are present. Using the coinci-
dence counts provided by Ref. [25], we perform NDO
tomography on the experimental measurements for the
state |Ψ〉 = 1√

2
(|00〉 + i|11〉), where the degrees of free-

dom represent the polarizations of the entangled pho-
tons. In Fig. 3 we plot the real and imaginary part of
the reconstructed NDO, selected with the same crite-
rion of minimum negative log-likelihood. The fidelity
between the NDO and the ideal state is found to be
FNDO = 0.9976, with MaxLi tomography achieving sim-
ilar fidelity FMaxLi = 0.992.

Conclusions - We have devised and constructed a
machine learning algorithm, based on a restricted Boltz-
mann machine, that is capable of storing a representa-
tion, and performing generative modelling, on a quan-
tum state with arbitrary mixing. The resulting graphical
model purifies the mixed state by enlarging the Hilbert
space with the use of latent, or hidden, units in the
stochastic neural network. The model can be readily
trained by standard machine learning techniques, includ-
ing contrastive divergence, with measurements from an
arbitrary basis, thereby allowing approximate quantum
tomography to be performed on any mixed state. We
demonstrate the technique on typical two-photon entan-
gled states, including real experimental data with un-
known noise sources, and achieve fidelities competitive
with standard tomographic techniques.

As machine learning techniques continue to become in-
tegrated into the field of quantum information science
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and technology, we anticipate their role in error correc-
tion, state and process tomography, and other tasks in
validation will rapidly increase. Restricted Boltzmann
machines offer a powerful method for generative mod-
elling, with training algorithms that are well-studied by
the machine learning community. Their demonstrated
ability to provide practical trade-offs between represen-
tation, computation, and statistics, offers a rich field of
study in the case of quantum states, which will be im-
portant in the integration of classical and quantum algo-
rithms inevitable in near-term devices and computers.
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