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Assemblages of self-propelled particles, often termed active matter, exhibit collective behavior
due to competition between neighbor alignment and noise-induced decoherence. However, very
little is known on how the quenched (i.e. time-independent) disorder impacts active motion. Here
we report on the effects of quenched disorder on the dynamics of self-propelled point particles.
We identified three major types of quenched disorder relevant in the context of active matter:
random torque, force, and stress. We demonstrate that even in the absence of external fluctuations
(“cold active matter”), quenched disorder results in nontrivial dynamic phases not present in their
“hot” counterpart. In particular, by analyzing when the equations of motion exhibit a Hamiltonian
structure and when attractors may be present, we identify in which scenarios particle trapping –
i.e. the asymptotic convergence of particle trajectories to bounded areas in space (“traps”) – can
and cannot occur. Our study provides new fundamental insights into active systems realized by
self-propelled particles on natural and synthetic disordered substrates.

Active matter became a research topics of broad scien-
tific interest, from soft matter physics to chemistry, biol-
ogy and engineering [1, 2]. Active self-propelled motion
leading to large-scale collective behavior was discovered
in living and synthetic systems across scales, from micro-
scopic in vitro cytoskeletal extracts [3–5], suspensions of
motile bacteria [6, 7], motile cell cultures [8, 9], colloidal
rollers [10–12] and surfers [13], to macroscopic animal
herds and bird flocks [14, 15]. Theoretical understand-
ing of active matter in terms of non-equilibrium statis-
tical mechanics was achieved by the analysis of discrete
particle models (so-called Vicsek-type models) [16, 17],
phenomenological hydrodynamic-like equations [18, 19]
or by the asymptotic reduction of the probabilistic Boltz-
mann equations for particle distribution functions to the
Ginzburg-Landau type equations for the corresponding
order parameters [20–22]. Both, simulations and the an-
alytic theory, led to the overall consensus on the emer-
gence of order is the result of aligning interaction between
the neighbors and the misaligning effect of the external
noise, e.g. due to thermal fluctuations or bacterial run-
and-tumble motion.

External (time-dependent) noise is not the only, and,
more importantly, not necessarily the main source of mis-
alignment and disorder in active systems. Self-propelled
particles moving on a substrate such as colloidal rollers
[10, 11], vibrated granular disks [23], gliding myxobacte-
ria [24], etc can be affected by the substrate imperfection
and roughness; flights of birds can be influenced by inter-
ferring obstacles or by topographical features. Surfaces
with a random pattern of local adhesive strength that
affect locomotion of motile eukaryotic cells can be de-
signed, for example, by microcontact printing [25]. Pre-
patterned surfaces and obstacles, as well as light fields,

have been already used in experiments to control and ma-
nipulate active particles [26]. Recent experiments with
Quincke rollers demonstrated that a random distribu-
tion of pinned obstacles can prevent a formation of po-
lar flows, passing through a state where the rollers self-
organize their motion into channels [27]. Surprisingly, at
a theoretical level still very little is known about how
quenched disorder, i.e. time-independent or “frozen”
noise, affects the statistical properties of collective mo-
tion in active systems. Combining simulations and ana-
lytical arguments it has been shown that in the presence
of a quenched disorder and a dynamical noise, active par-
ticles can exhibit sub-diffusion [28] and that by increas-
ing quenched disorder, the onset of self-organized polar
flows can be suppressed [29, 30], as it was found experi-
mentally in [27]. It was also shown that there exists an
optimal (dynamical) noise that maximizes collective mo-
tion in disordered environments [29, 30]. On the other
hand, it has been found that volume exclusion can lead
to jamming, frozen states, and moving chains [31–34].

In contrast, particle dynamics with quenched disorder
is one of the main topics in equilibrium statistical me-
chanics; it also has enormous practical importance. The
motion of Abrikosov vortices in type-II superconductors
is the main reason for the dissipation and breakdown of
the non-resistive state. Immobilization (or pinning) of
the vortices by natural and artificial random defects is
the main strategy to fight the dissipation [35]. Pinning
of magnetic domains by defects results in a permanent
magnetic moment in ferromagnetic materials [36]. On
the other hand, a glassy behavior is typically modeled
as the motion of a particle in a random energy land-
scape [37]. Particle driven in a random potential by an
external bias can be described in the terms of a “shak-
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ing temperature” [38]: moving random pinning landscape
generates fluctuations with the overall effect equivalent
to a thermal Langevin force. The concept of “shaking
temperature” successfully explained the dynamic melt-
ing of the vortex lattice in type-II superconductors [38].
However, the analogy between thermodynamic temper-
ature and the shaking temperature appears to be not
complete even in equilibrium systems. Further studies
revealed that in contrast to thermal fluctuations, driven
vortex lattice flows through well-defined, elastically cou-
pled, static channels [39].

Here, by examining the simplest (or barebone) model
of active matter, we investigate the effect of quenched dis-
order on the motion of self-propelled particles. We iden-
tified three main types of spatial disorder termed corre-
spondingly random torque (RT), random force (RF) and
random stress (RS): RT involves a (local) random turn-
ing of the active particle, RF aligns the particle to a local
prescribed direction, and RS aligns the particle to a lo-
cal nematic director; how to implement in practice such
disorders are discussed at the end. We show that the
equations of motion of noninteracting active particles in
RT disorder exhibit a Hamiltonian structure, preventing
the presence of attractors, and leading to diffusive par-
ticle motion. We indicate that by adding particle inter-
actions the system becomes dissipative, making possible
the presence of attractors and thus of “particle trapping”:
i.e. the asymptotic convergence of particle trajectories to
bounded areas in space. For RF and RS disorder, there
is a lack of Hamiltonian structure for both, interacting
and noninteracting active particle, and for large disor-
der strengths particle trapping occurs. In summary, cold
active matter is characterized by the presence of a new
dynamic phase not present in “hot” system: after a long
transient, all particles end up moving in a few closed or-
bits, i.e. “traps”, and the system get pinned; this new
phase is observed at large enough disorder strength for
interacting particles in RT disorder, as well as for both,
noninteracting and interacting particles subject to either
RF or RS disorder.

Model.– We consider a continuum-time model for
N self-propelled particles moving in a two-dimensional
double-periodic domain of size L with quenched disor-
der. In the absence of particle-particle interactions, the
dynamics the i-th active particle is described by:

ẋi = v0V(θi) ; θ̇i = Rs (xi, θi) , (1)

where the dot denotes temporal derivative, xi corre-
sponds to the position of the i-th particle, and θi is
related to its propulsion direction, which is given by
V(θi) ≡ (cos(θi), sin(θi)), and v0 is the active speed. The
term Rs (xi, θi) represents the quenched disorder, with

s = RT, RF, RS defined as:

RRT (xi, θi) = AΓ(xi) (2)

RRF (xi, θi) = A sin(α(xi)− θi) (3)

RRS (xi, θi) = A sin(2(α(xi)− θi)) , (4)

where A is the disorder strength, Γ(x) is a random
(time-independent) function such that −1 ≤ Γ(x) ≤ 1
and α(x) is a random (time-independent) phase, with
−π ≤ α(x) ≤ π. In order to define the quench fields
Γ(x) and α(x), the space is divided into squared cells
of size ∆x × ∆x in such a way that any point in the
space x has associated a cell. A random value of either
Γ or α is assigned to each cell using a uniform distribu-
tion in the interval [−1, 1] and [−π, π], respectively. This
implies that Γ(x) – and similarly for α(x) – is such that
〈Γ(x)〉c = 0, and 〈Γ(x)Γ(x′)〉c = 0 for x and x

′ belonging
to different cells, where 〈. . .〉c denotes an average taken
over all cells. For x and x

′ belonging to the same cell,
it reduces to the second moment of the above-defined
top-hat distribution, 〈Γ(x)Γ(x′)〉c = 1/3. To account
for particle-particle interaction, an extra term Iq can be
added to the equations of motion:

ẋi = v0V(θi) ; θ̇i = Iq (xi, θi) + Rs (xi, θi) , (5)

where Iq (xi, θi) represents the interaction of particle i
with its neighbors defined by:

Iq (xi, θi) =
1

n(xi)

∑
|xi−xj|<1

sin (q(θj − θi)) (6)

where q defines the symmetry of the velocity alignment,
with q = 1 for polar and q = 2 for apolar alignment, and
n(xi) denotes the number of neighbors of particle i within
unit distance. Equations have been non-dimensionalized
in such a way that the unit of distance corresponds to
the radius of interaction and the time unit to the inter-
action strength. The model defined by Eq. (5) provides
a generalization of Vicsek-like models [16] (see also [40])
with quenched disorder.
Note that due to the Hamiltonian structure of the

equations for noninteracting particles with RT disorder
and absence of time-dependent noise, see below, sim-
ulations have to be performed with a symplectic inte-
grator scheme, see [41] for details. It is a matter of
debate [42, 43] on whether the long-time behavior of
the discrete-time Vicsek model with dynamic noise de-
pends on the so-called backward [16] and forward up-
date rule [44, 45]. Here, we provide solid mathematical
arguments that show that for quenched disorder only the
forward update rule, given its symplectic structure, pro-
vides a correct description. These arguments, however,
cannot be applied to the above-mentioned (dynamic noise
related) debate.
Results.– Noninteracting particles subject to RT disor-

der can be mapped to a classical problem of the motion of
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FIG. 1. Non-interacting particles. (a)-(c) Mean squared displacements (MSD) vs. time t for RT, RF, and RS disorder,
respectively, for different disorder strengths A. The black, red, green, and blue curves correspond to A = 0.05, 0.1, 0.3, 0.5
in (a) and A = 0.1, 0.5, 1.0, and 5.0 in (b-c). (d)-(f) Particle positions for RT, RF, and RS disorder, respectively, at t = 106

starting from the same initial condition using 5 different quenched landspaces (A = 0.5); particles of the same color move on
the same quenched landscape. For RT, (d), particle trajectories do not (asymptotically) converge on preferred areas, while for
RF and RS, (e-f), particles are localized in closed orbits (“traps”): see magnifications of traps in (e) and (f) where each square
corresponds to a cell ∆x×∆x containing a time-independent noise value. (g) A trap visited by particles starting from 5 different
random initial conditions (color coded) that moved on the same quenched landspace (A = 0.5). (h) The histogram displays the
number of particles that landed on the trap shown in (g) from the 5 different random initial conditions. Parameters: N = 900,
L = 30, v0 = 0.1, and ∆x = 0.5.

an electron in a random magnetic field Γ(x). To demon-
strate that, one takes a time derivative of Eq. (1), for
s = RT, that yields after some simple algebra to:

ẍ = ẋ× (−AΓ(x)z0) (7)

where z0 is the unit vector in z-directions. In two di-
mensions, Eq. (7) is a completely integrable system since
it has two integrals of motion: the Hamiltonian H and
the linear momentum magnitude |ẋ|2 = v20 . The Hamil-
tonian structure of Eq. (7) implies that it cannot have
an attractor. Consequently, trajectories cannot converge
asymptotically to “preferred areas” of the system – i.e.
trapping cannot occur – and particle motion is expected
to be diffusive. Numerical simulations confirm that mean
squared displacement (MSD) scales linearly with time t,
Fig. 1(a). To evaluate the diffusion coefficient of these
particles, we employ the concept of “shaking tempera-
ture” Tsh [38]. We assume that the disorder strength
is small, A ≪ 1. Since the particle explores the space
at a speed v0, i.e. x(t) ≈ v0tu0, where u0 is a random

unite vector, we approximate θi(t) = A
∫ t

0
dt′Γ(x(t′)) ≈

A
∫ t

0
dt′Γ(u0v0t

′), assuming that all paths are statically
equivalent. Using the above expression for θi, we arrive

at:

〈θ2i (t)〉 = 2A2

∫ t

0

dt′
∫ t′

0

dt′′〈Γ(u0v0t
′′)Γ(u0v0t

′)〉

≈ 2
A2〈Γ(x)2〉c∆x

v0
t = 2Tsht (8)

Thus, similar to thermal systems, the shaking tem-
perature is defined via the disorder correlation Tsh =
A2〈Γ(x)2〉c∆x/v0. Note that it is required that ∆x > 0.
Thus, we define the angular diffusion coefficient Dθ:

Dθ = Tsh =
A2∆x

3v0
(9)

The corresponding translational diffusion coefficient Dtr

can be obtained as

Dtr =
v20
2Dθ

=
3v30

2A2∆x

(10)

In contrast to the case of temporal noise where Dtr ∼ v20 ,
here the diffusion coefficient is proportional to v30 . The
predictions by Eq. (10) are verified in simulations [41].

Remarkably, the Hamiltonian structure is lost in the
interacting case. Interactions formally make the system
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FIG. 2. Interacting particles. Mean squared displacement (MSD) vs. time t for polar and apolar (velocity) alignment, upper
and bottom row, respectively, for RT (a, d), RF (b, e), and RS (c, f) disorder and various disorder strength values A. For
movies, see [41]. Parameters: N = 900, L = 30, v0 = 0.1, ∆x = 0.5. The black, red, green, and blue curves correspond to
A = 1.0, 1.5, 2.5, 3.0 in (a) and (d), A = 0.005, 0.05, 0.1, 0.3 in (b), (c), (e), and A = 0.1, 0.3, 0.5, 1.0 in (f).

dissipative. In particular, Eqs. (5) for q = 1 (polar align-
ment) can be written in the dissipative Landau-Lifshitz-
Gilbert form:

ẍi = −ẋi×AΓ(xi)z0+
1

v20n(xi)
ẋi×

∑
|xi−xj|<1

ẋi× ẋj (11)

This renders possible the presence of attractors and thus
the trapping of particles. Numerical simulations confirm
that with both, polar and apolar interactions, particles
asymptotically become localized into traps as evidenced
by the crossover from a diffusive behavior (MSD ∝ t) to
a seemingly saturated value of the MSD, see Fig. 2 (a)
and (d). Note that many time-scales may be present:
first, the time to find an attractor (crossover from diffu-
sive to saturation-like behavior of MSD) and then a slow
(logarithmic) dynamics inside the attractor.
For RF and RS disorder, the equations of motion do

not have a Hamiltonian structure, even in the absence of
interactions, and thus trapping of particles is possible. In
the limit of weak disorder, A ≪ 1, and for finite time and
systems, these two disorders can be approximated to that
of RT. To see that, we make an expansion in A for the
angle θ = θ0 +Aθ1 +A2θ2 + .... Substituting this expan-
sion into Eq. (1), for s = RF, one obtains θ0 = const and
θ̇1 = A sin(α(x)− θ0)+O(A2). If the angle relation time
τ = 1/A is large compared to the disorder decoherence
time τ0 = ∆x/v0, the problem can be mapped to the RT
situation with an effective disorder Γeff(x) = sin(α(x)).
Numerical simulations with noninteracting particles in
RF and RS disorder confirm that for small values of A
normal diffusion is observed, while for large values of A,
as expected by the absence of a Hamiltonian structure,
particle trapping occurs, Fig. 1(b), (c). Fig. 1(e), (f)
show some typical examples of traps. From these figures,

it is evident that traps are closed orbits found by the
active particles that expands over several cells of area
∆x × ∆x, containing each of them a time-independent
noise value.

It is worth mentioning that the system behavior
strongly depends on the initial condition and the specific
quenched noise landscape that is studied. Fig. 1(e), (f)
illustrate the sensitivity to quenched noise realization by
showing particle positions resulting from 5 different nu-
merical experiments, all starting with exactly the same
initial conditions, and each of them using a different, but
statistically identical, quenched disorder landscape. To
study the sensitivity to the initial condition, we focus on
a single trap (in a given quenched noise landscape) and
compute the number of particles that end up in the trap
starting from different initial conditions, Fig. 1(h) All
this implies that for time-independent disorder there is
no unique steady state.

Note that including the inter-particle interactions for
RF and RS disorder does not restore a Hamiltonian struc-
ture and thus attractors may be present and particle
trapping possible. Numerical simulations with interact-
ing particles, with either polar or apolar alignment, in RF
and RS disorder confirm that particle trapping occurs,
Fig. 2(b-c) and (e-f). The pinned states (or traps) for in-
teracting particles under RF and RS are similar to those
in Fig. 1 (e), (f), but with an important difference: in-
teracting particles form a high-density clusters that move
along the closed orbits (see [41]). Furthermore, neighbor-
ing traps, each of them with a moving cluster, become
coupled via the interacting term Iq leading typically to a
remarkably slow dynamics where eventually particles fuse
and occupy one of the two initial traps, and the behavior
of the MSD seems to be (once inside traps) logarithmi-
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cally slow, i.e. MSD(t) ∝ log(t) (see [41] for movies and
further details).
We indicate that due to quenched noise disorder long

static channels, similar to that predicted for driven vortex
lattice [39], emerge. For finite systems, such long static
channels may span the entire system and lead to a (finite-
size-related) ballistic regime.
Finally, it is instructive to consider the limiting case

of instant alignment with the disorder, corresponding to
A → ∞, even if it is out of reach numerically. For s =
RF, this limit implies that θ = α(x) and thus:

ẋ = v0 cos(α(x, y)), ẏ = v0 sin(α(x, y)) (12)

The conservation of the magnitude of the linear momen-
tum |ẋ|2 = v20 implies that Eqs. (12) cannot have fixed
points. On the other had, rigorous topological arguments
state that Eqs.(12) cannot have periodic orbits either. In-
deed, if the disorder function is continuous, then, accord-
ing to the index theorem [46], in two dimensions any peri-
odic orbit would contain at least one fixed point. Similar
considerations apply to the RS disorder. In consequence,
in the limit of A → ∞ we expect to recover diffusive
behavior.
Concluding remarks.– The presented results can be ex-

tended in many directions. While we identified three pri-
mary types of disorder (RT, RF, RS), it is likely that
in experimental realizations the quenched disorder is not
reduced to a specific type but rather a combination of
them. Another important aspect is the presence of a
time-dependent noise. We anticipate that depending on
the disorder type, time-dependent noise may lead to non-
trivial effects, in particular to intermittent trapping of
the particles, and thus to the possibility of subdiffusion.
Another intriguing question relates to the limit of

A ≫ 1, in relation to the limiting case given by Eqs. (12).
The Sinai diffusion model for the motion of a particle
in a one-dimensional random potential is a paradigm of
glassy dynamics [47]. The model given by Eqs. (12) is an
interesting generalization of the Sinai diffusion problem
to two dimensions. In the limit ∆x → 0 Eqs. (12) will
represent an example of “active glass” and logarithmi-
cally slow dynamics at zero temperature. In summary,
the limit A ≫ 1 may unveil interesting new physics.
Finally, depending on the active system in hand, vari-

ous approaches can be used to engineer a specific disorder
type. For example, in bacterial suspensions, the RT dis-
order can be implemented by varying the hydrodynamic
slips length via surface treatment [48, 49]; RS can be
realized via a random director pattern on a surface, sim-
ilar to that in [50–52]. RF can be achieved in the roller
system [10, 12] via a substrate height modulation.
F.P. was supported by the Agence Nationale de la

Recherche via project BactPhys, Grant ANR-15-CE30-
0002-01. I.S.A. was supported by the US Department
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022101 (2006).

[22] A. Peshkov, I. S. Aranson, E. Bertin, H. Chaté, and
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