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A simple non-interferometric approach for probing the geometric phase of a structured Gaus-
sian beam is proposed. Both the Gouy and Pancharatnam-Berry phases can be determined from
the intensity distribution following a mode transformation if a part of the beam is covered at the
initial plane. Moreover, the trajectories described by the centroid of the resulting intensity distri-
butions following these transformations resemble those of ray optics, revealing an optical analogue
of Ehrenfest’s theorem associated with changes in geometric phase.

In 1984, almost 30 years after Pancharatnam [1] first
noticed a geometric phase in light polarization, Berry
[2, 3] discovered that quantum systems acquire not only
a dynamic phase due to time evolution but also a geo-
metric phase dependent on the path taken in their pa-
rameter space. This geometric phase, known also as the
Pancharatnam-Berry (PB) phase, depends only on the
parameter space’s geometry. Geometric phases have un-
dergone extensive generalizations, led to many applica-
tions [4–11], and become a unifying concept in physics.
Geometric phases of light appear in many scenarios, such
as polarization [1] and changes in propagation direction
[12]. Changes in the transverse modal structure of an
optical beam can also lead to a geometric phase [13–18]
understood in the context of a spatial mode Poincaré
sphere. It is this last type of geometric phase that is the
main focus of this work.

The modal Poincaré sphere (MPS) was proposed for
first-order structured Gaussian beams [14] where the two
poles correspond to Laguerre-Gauss (LG) modes with
equal circular shape but opposite vorticity. All other
points over the sphere correspond to complex linear com-
binations of these two modes. In particular, points along
the equator correspond to rotated Hermite-Gauss (HG)
modes with Cartesian ordersm = 1, n = 0. This MPS con-
struction was later extended [15] to characterize higher-
order modes. The two poles are again assigned to LG
modes with equal radial order p and azimuthal orders
±l (l ≥ 0). The rest of the sphere corresponds not to
linear combinations of these two modes but to the gener-
alized Hermite-Laguerre-Gauss (HLG) modes [19], with
points over the equator corresponding again to rotated
HG modes with Cartesian orders m = p + l, n = p. Fig-
ure 1 shows an example of this MPS corresponding to
p = 5, l = 3, with experimentally measured modes deco-
rating the sphere’s surface. Given this construction, it is
natural that a PB phase arises from a series of optical
transformations that traces a closed path over the MPS.
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FIG. 1. Modal Poincaré sphere for p = 5, l = 3. The red
frame identifies the input horizontal HG8,5 mode used in the
experiments. The colored circle over the sphere corresponds
to the Poincaré path (PP) of this mode, where each point cor-
responds to a family of rays whose cross section is an ellipse.
Some of these ellipses of rays are shown in the bottom-left
picture labeled “rays”, where color is used to identify these
ellipses with points along the PP. These colors represent dif-
ferent values of η, while different rays within each ellipse cor-
respond to different values of τ . The 3D picture of the beam’s
wave intensity is shown above that for the rays. The center
of the PP is the modal spot, shown as a red dot. Also shown
are the experimental intensity distributions of other modes,
corresponding to the modal spots shown as orange dots. (The
corresponding PPs and ray distributions are not shown.)

Here we present a simple noninterferometric approach
for measuring the PB phase. This approach emerges from
a deeper understanding of structured Gaussian beams,
based on an intuitive ray model [20, 21] that explains
both the PB and Gouy phases. Structured Gaussian
beams can be described in terms of a ray family in which
each ray is specified by the values of two periodic pa-
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FIG. 2. Mode transformation corresponding to the closed (red) path traced by the modal spot over the MPS. The ray
distributions at different stages along the path are shown inside the circles around the MPS, where points of equal color
correspond to equal values of η. The initial and final ray distributions (directly to the left of the MPS) have the same
rectangular shape and correspond to the same HG mode, but the different color distribution reveals the cycling of the rays that
gives rise to the PB phase. For the initial ray distribution the colors of the ellipses identify points of the PP in Fig. 1. The
figures on the left (gray background) show the effect of blocking all but the lower right corner of the initial HG beam, before
(bottom row) and after (top row) the mode transformation, and the resulting drift in intensity centroid (red crosses) for the
measured and simulated intensities, and the transmitted rays.

rameters, τ and η. At any transverse plane, the rays
corresponding to all values of τ , for fixed η, trace an
ellipse with given orientation, handedness and eccentric-
ity (see Supplemental Materials for details). In analogy
with polarization, this ellipse of rays corresponds to a
point on the Poincaré sphere. The second variable, η,
parametrizes a closed loop over the sphere, referred to
here as the Poincaré path (PP), shown as a colored cir-
cle in Fig. 1, for a HG mode. Each beam corresponds
not to a point but to an extended path over the sphere.
The transverse ray structure is then a continuous super-
position of ellipses, where each point of each ellipse is a
ray. For HG, LG and more general HLG modes, the PP
is simply a circle, whose center (also shown in Fig. 1)
corresponds to the spot used in the standard MPS rep-
resentations [7, 14, 15, 22], so we call it the modal spot.
Note that the ray elipses form envelopes, i.e. caustics, in
the vicinity of which the main intensity features are lo-
calized. For HG modes these caustics have a rectangular
shape (see Fig. 1), consistent with the fact that the wave
solution is separable in Cartesian coordinates. Similarly,
for a LG mode, separable in polar coordinates, the caus-
tics are two concentric circles. Note also that modes with
equal total mode order N belong in the same sphere but
correspond to different PPs. For example, the PPs for
HG modes with equal N = m + n are circles centered at
the same modal spot but with different sizes, enclosing
solid angle quantized as 2π(2n + 1)/(N + 1) [21].

Conversion between modes is possible using a series
of anisotropic quadratic phase masks implemented with
spatial light modulators (SLMs) [23, 24]. These transfor-
mations have the effect of rotating the MPS around an
axis within the equatorial plane. The orientation of this
axis depends on the orientation of the quadratic phases,
and the angle of rotation depends on their strength. A se-
quence of transformations can be considered that brings
the modal spot of the circular PP back to its initial po-
sition. One such example is presented in Fig. 2, where
the modal spot starts and ends at an equatorial point
that corresponds to a HG mode. Even though the final
and initial modal spots coincide, each point of the PP
is shifted according to η → η − Ω, where Ω = 2γ is the
solid angle traced by the modal spot, and γ is the an-
gle between the segments of the trajectory. This trans-
formation sequence is equivalent to a single rotation by
Ω of the sphere around the direction of the initial/final
modal spot. Wave-optically, this rotation corresponds
to an anamorphic fractional Fourier transform (see Sup-
plemental Materials) acting on the mode, which can be
written in operator form as

exp [iγ (Ĥx − Ĥy)] , (1)

where Ĥq for q = x, y has the form of a 1D harmonic
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FIG. 3. Schematic of the optical set-up. For the non-
interferometric measurement, only the arm of the Michel-
son interferometer that contains the SLMs is used. The
anisotropic lenses L1 and L3 are implemented on SLM1, while
L2 is implemented on SLM2. The input field is imaged onto
SLM1 using a 4f system (unit magnification) formed by lenses
Li1 and Li2. In the reference arm (used for the interferomet-
ric measurements), the field is relayed onto mirror M using
another telescope formed by lenses Li5 and Li6 (magnifica-
tion=0.5). The interference signal is relayed to the CCD
detector using the 4f system formed by lenses Li3 and Li4
(magnification=0.5). Distances are not drawn to scale.

oscillator Hamiltonian given by
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with w0 being the waist width [25]. The modal PB phase
is then derived using an operator formalism analogous
to that used in quantum mechanics [20, 26]. Since HG
modes are eigenstates of the operator Ĥx−Ĥy with eigen-
value N − 2n the effect of the operator in Eq. (1) is then
to produce the PG phase Φ = (N − 2n)γ. Within the ray
picture, this transformation has an intuitive geometric
interpretation: it simply corresponds to a cycling of the
roles played by the different ellipses of rays (compare the
initial and final ray configurations in Fig. 2). The PB
phase is then caused by a change in the role that each
ray plays in the beam profile.

The proposed method for probing the geometric phase
exploits this cycling. If part of the initial beam is oc-
cluded, the shadow in the final beam is at a different
part of its transverse profile, its location linked to the ac-
quired PB phase. Figure 2 shows the effects of this occlu-
sion for both rays and waves, where only the lower-right
corner of the initial HG beam is unblocked. Following the
modal transformation, the unblocked rays spread out and
drift towards the upper-left corner due to the ray cycling
caused by the transformation. The simulated and exper-
imentally measured wave intensities exhibit the behavior
anticipated by analyzing the rays. The position of the
intensity distribution centroid is sufficient for determin-
ing the PB phase. The intensity centroid (xc, yc) after
the transformation is just a linear combination of the
intensity centroid (x0, y0) of the initial beam and that
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FIG. 4. PB phase measurement results. (a) Measured PB
phase as a function of γ using the centroid of the blocked
beam (circles, top panel), and interferometric measurements
(diamonds, bottom panel). The non-interferometric results
are wrapped onto [0,2π) for comparison with the interfero-
metric ones. Error bars are shown for both, as well as the
theoretical value (gray line). (b) Measured intensity of the
transformed blocked beam (plotted on a log scale) with cen-
troids as red crosses, for different γ. The symbols at the insets
correspond to the markers in (a).

of its Fourier transform [27, 28]. Further, because the
Fourier-space centroid vanishes when the initial beam is
a blocked HG mode, the centroid for the transformation
considered here is simply

(xc, yc) =(x0, y0) cosγ. (3)

This centroid gives access to γ within the range [0, π),
from which the PB phase can be deduced. ForN−2n = l >
2 this allows discriminating between different multiples
of 2π, in contrast with interferometric approaches [17].

In our experiments, the mode transformation is based
on a set-up [23, 29] that uses three anisotropic lenses
equally separated by a distance z, as shown in Fig. 3.
The powers of these lenses are parametrized by the angles
αx, αy as

p(L1,L3)
q = [1 − cot (αq/2) /2] /z, (4a)

p(L2)
q = 2 (1 − sinαq) /z, (4b)

where L1, L2 and L3 denote the three lenses and p(Lj)q is
the power of Lj along the q direction, with q = x, y. (The
relation between the angles αx, αy and the system’s geo-
metric phase is discussed in the Supplemental Materials.)
The lenses are implemented electronically by displaying
their phase transmittances on two SLMs controlled us-
ing LabView. Note that L2 is implemented in reflection
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γ = 0.7π

FIG. 5. Evolution of the intensity distribution of a blocked
HG beam as the Gouy phase varies, and the corresponding
elliptic trajectory traced by the centroid for a fixed PB phase.

mode, so L1 and L3 correspond to the same SLM. The
desired input beam (a HG8,5 mode, shown in Fig. 1) is
prepared by illuminating a third SLM in a different set-
up (not shown in Fig. 3) with a collimated laser beam
(λ = 795 nm) polarized along the SLM’s preferred axis.
A metallic mask occludes part of the input beam and
the intensity is recorded by a CCD. The intensity of the
obscured input beam is shown in the lower-left corner of
both Figs. 2 and 3. The centroid coordinates (xc, yc) are
computed from the recorded intensity and Eq. (3) is used
to extract two values for γ, which are averaged to obtain
the final estimate. Notice from Fig. 3 that the set-up
also includes a reference arm, not used for the centroid
measurements.

For validation, interferometric measurements are also
performed by sending the complete HG mode through
both the test and reference arms (see Supplemental Ma-
terials for details). Figure 4 shows the agreement between
the PB phases obtained via interferometry and the cen-
troid measurements, for multiple values of γ correspond-
ing to many paths over the MPS.

An important feature of the intensity centroid mea-
surement is its insensitivity to dynamic phase and its
ability to determine also the Gouy phase. This phase is a
result of the increase in spacing between wavefronts near
the focal regions of any beam, and for the beams consid-
ered here, it constitutes an extra phase of (N +1)π/2 be-
tween the waist plane and the far zone [21, 30]. Different
interpretations have been given to this phase [31–33], but
here we focus on its connection with ray optics. Within
the ray picture of structured Gaussian beams used here,
the Gouy phase corresponds to a shift in the other ray
parameter, τ → τ + ζ, where ζ = arctan(z/zR) with zR
being the beam’s Rayleigh range [21, 30]. That is, while
the PB phase corresponds to a cycling of the ellipses of

γ =0.0π
γ =0.2π
γ =0.4π
γ =0.7π
γ =0.9π

FIG. 6. Elliptic trajectories traced by the centroid given a
constant PB phase determined by the values of γ (between 0
and 0.9π). The solid curves correspond to the theoretical ex-
pectation. Error bars for centroid determination are included
in both directions. The arrowheads indicate the location of
zero Gouy phase and the direction of its increase.

rays (a shift in η), the Gouy phase corresponds to a cy-
cling of rays within each ellipse. This cycling also has
the effect of moving the obstruction’s shadow, and the
resulting intensity centroid (see Fig. 5) is now given by

(xc, yc) =[x0 cos(ξ + γ), y0 cos(ξ − γ)]. (5)

where ξ = (N + 1)ζ/N . Therefore, both the Gouy and
PB phases can be inferred from the centroid position,
without the need for diffraction calculations [34].

An interesting manifestation of Ehrenfest’s theorem
emerges in this context: the centroid coordinates in
Eq. (5) mimic the ray positions for the HG modes [com-
pare with Eq. (S3) in the Supplemental Material], with
γ playing the role of η and ξ that of τ . Like the rays,
the centroids are constrained to a rectangle centered at
the origin with upper-right corner coordinates (∣x0∣, ∣y0∣).
This is shown in Fig. 6 for both theory and experimental
measurements. This rectangular envelope is a scaled ver-
sion of the caustics for the beam [21]. For fixed PB phase
(γ) and varying Gouy phase (ξ), the centroid traces an
ellipse that is inscribed in this rectangle, similar to the
ray ellipses.

In summary, a non-interferometric method for mea-
suring geometric phases in structured Gaussian beams
is presented. The approach is motivated by the toroidal
structure (involving two periodic parameters) of the
ray family associated with these beams, and it relies on
the fact that the PB and Gouy phases correspond to
shifts on each of the two ray parameters (two different
rotations of this torus). These shifts have no effect on
the intensity of the unperturbed beam, but they become
appreciable when part of the beam is blocked. Note
that when the blocked part is not too large, we can
view this phenomenon as a so-called “healing” effect
[21, 35], in which the blocked features are restored by
the mode transformation at the cost of the shadow
moving elsewhere in the beam profile. These results
highlight the conceptual power of the ray picture as a
way to understand the internal structure of the beam,
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and provide an example of the similarity of the behavior
of rays and intensity centroids according to Ehrenfest’s
theorem, not only for evolution under free propagation
but also under the more complex modal transformations
considered here. Finally, while we focused on geometric
phases for structured beams, variants of this approach
can be applied to other incarnations of geometric phase
through the observation of the effects of perturbations
in the incoming state. For polarization, for example,
a dichroic element can be used to modify the initial
polarization, whose effect on the output would reveal
the geometric phase [36, 37].
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