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We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages
acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing
spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that
comprises a flux tunable transmon coupled to a 300µm long surface acoustic wave resonator. For
some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz),
qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both
the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes
of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for
spontaneous emission of phonons, and we identify operating frequencies where this emission rate is
suppressed.

Emergent phenomena of many-body spin physics may
be studied more readily with artificial systems rather
than real materials. This possibility has led to a prolifer-
ation of techniques striving to emulate model Hamiltoni-
ans that exhibit many-body localization [1–4], topologi-
cal protection [5, 6], and quantum phase transitions [7–9].
Of these artificial systems, transmon qubits coupled by
microwave frequency electrical resonances show tremen-
dous promise [10]. Specifically, if microwave excitations
of the qubits or resonators are regarded as particles, the
strong electrical non-linearity of the qubit creates an ef-
fective particle-particle interaction that is much larger
than the relevant dissipation and decoherence processes
[11]. Such an equivalently strong interaction has yet to
be demonstrated with optical photons. Furthermore, in
contrast to artificial systems that hold single atoms in
optical lattices [12], planar circuits are rigidly fixed to
their substrate and therefore have no spatial entropy.

Coupling many qubits to a dense cavity spectrum
has been proposed as a means of engineering finite-
range interactions for use in analog quantum simulations
[13]. Such a system would consist of multiple degen-
erate qubits within a multimode cavity in the disper-
sive limit, where the qubits are detuned from the cav-
ity by much more than the qubit-cavity coupling rate.
However, building this in the circuit quantum electrody-
namics (cQED) architecture [14–16] is hindered by the
mismatch of scales between the qubits and the electro-
magnetic modes. For example, low dissipation planar
resonators are centimeter long transmission lines [17],
whereas the transmons are generally ∼100µm. Further-
more these planar resonators are difficult to shield from
each other, often resulting in undesired couplings.

As sound propagates 5 orders of magnitude slower
than the speed of light, this scale mismatch can be over-
come by replacing electromagnetic resonators with acous-
tic cavities, a strategy that has been pursued with bulk
acoustic waves [18, 19]. Surface acoustic waves (SAWs)
[20] have the additional feature that they are confined

to the surface of a chip, allowing them to interact with
sophisticated planar structures and many qubits. They
readily make compact, multimode cavities with excel-
lent shielding. At low temperatures and with excita-
tions on the single phonon scale, SAW cavities have been
demonstrated with high quality factors [21, 22]. Trans-
mon qubits have been successfully coupled to propagat-
ing SAWs on GaAs [23], and to a single mode of a SAW
resonator on quartz [24–26], but presently it’s unclear
what limits the coherence of acoustically coupled qubits.
In order for qubits in cavity quantum acoustodynami-
cal (CQAD) systems to experience coherent and finite
range interactions, the system should operate in both
the strong coupling and strong multimode limits.

In this Letter, we demonstrate such a CQAD system
where the qubit-cavity coupling strength is larger than
both the qubit and cavity decoherence rates, and also
larger than the cavity free spectral range (FSR) νFSR.
We also show that a qubit coupled to a SAW cavity has
a special property that allows it to overcome an essential
incompatibility between long qubit coherence and dis-
persive coupling to a multimode cavity [28]. In detail,
when the qubit is resonant with the spectrum of acoustic
modes, we observe clear avoided crossings and extract the
couplings gm of the qubit to 17 high quality modes of the
acoustic cavity, finding gm/2π ∼ νFSR for most modes.
This strong multimode coupling inhibits the qubit from
reaching the dispersive regime (detuned far from all cav-
ity modes) when its frequency lies between these modes.
However, the cavity confines phonons only over a narrow
frequency range, allowing the qubit to be far detuned
from all resonant modes while also relaxing the qubit via
phonon radiation. Indeed, in the dispersive regime we
measure the qubit linewidth as a function of qubit fre-
quency and resolve a substantial contribution from spon-
taneous emission of unconfined phonons [29]. But crucial
to the feasibility of many-body spin emulation, we also
identify special qubit frequencies where this emission is
prohibited.



2

(b)

(c) (d)

(a)

L
(f )

(e)

λcλc

re
fle

ct
io

n 
(d

B
)

frequency (GHz)

phase (rad)

4.23

0 0

2�

4�

6�

-10

-20

-30

4.24 4.25 4.26 4.27 4.28

1 2

3

4

5
6

7 8
9

10 11

input

output

FIG. 1. Device diagram and acoustical cavity spectrum. (a) A cartoon schematic of the SAW cavity, acoustically coupled
qubit, and the microwave network for control and measurement. (b) A false color SEM image of the fabricated device before
the Josephson junction was patterned. Two Bragg reflectors (blue), each consisting of 400 Al strips, are spaced by L = 275µm
to define a SAW cavity, and a split-junction transmon qubit (red) was placed at Leff/4 from the left reflector. A cavity-IDT
(pink) with 125 periods at L/2 is used to drive and readout the cavity modes. The center- and ground-conductor of a coplanar
waveguide (yellow) contact either side of the IDT. Measurements consist of detecting the reflection of a microwave tone applied
to the cavity-IDT. A directional coupler separates incident and reflected waves, so that the reflected signal is passed through
a high electron mobility transistor (HEMT) amplifier and measured. False color SEM images of (c) a split Josephson-junction
with a 7×7µm2 loop area, (d) a split-finger IDT with the upper electrode in green and the lower in purple [27], and (e) several
Al stripes within a Bragg reflector. The characteristic wavelength of the cavity is indicated, λc = vs/fc = 677 nm, where
the center frequency is fc = 4.253 GHz. (f) A microwave reflection measurement of the SAW cavity reveals 11 (numbered)
prominent longitudinal modes within the mirror bandwidth.

We demonstrate these characteristics with the device
drawn schematically in Fig. 1(a) and imaged in Fig. 1(b).
This device is a flux tunable qubit inside a multimode
SAW cavity on GaAs. The qubit is a transmon con-
sisting of a split Josephson junction in parallel with a
split-finger interdigitated transducer (IDT) [27]. The
IDT forms both a shunting capacitor (∼100 fF) and a
piezoelectric transducer that interacts with SAW waves.
The cavity is defined by two Bragg reflectors separated
by 275µm, each consisting of a periodic array of alu-
minum stripes. Each stripe weakly reflects incoming
SAWs (<2%), primarily due to mass loading [30]. The
arrays are highly reflective over a narrow frequency range
(∼50 MHz), while SAW penetration makes the effective
cavity length Leff = 300µm. The acoustic response is
probed through a split-finger IDT, centered in the cav-
ity, that converts between mechanical excitations in the
cavity and microwave signals in the coplanar waveguide.

We first characterize the acoustic modes by tuning the
transmon far away from the cavity resonances using an
off-chip coil. The device was embedded in a microwave
measurement network as shown in Fig. 1(a) and cooled
below 30 mK in a dilution refrigerator. Fig. 1(f) shows
the microwave reflection coefficient versus frequency of
the acoustic cavity. Over the mirror bandwidth of ap-
proximately 50 MHz, we observe 11 prominent equally
spaced resonances. For each of these dips, there are
weaker adjacent resonances at higher frequency. We in-

terpret the 11 prominent resonances as purely longitudi-
nal cavity modes, and the higher frequency satellites as
modes with a non-zero transverse mode number. In what
follows, we will model the 11 longitudinal modes and
the 6 more visible transverse modes. From the spacing
between longitudinal modes we extract the cavity FSR
νFSR = vs/2Leff = 4.8 MHz, where vs = 2880 m/s is the
speed of sound on GaAs, consistent with our expectation
from the cavity geometry. The longitudinal modes have
κl/2π ≈ 200 kHz linewidths, and the transverse mode
linewidths are slightly lossier with κt/2π ≈ 400 kHz.

Having characterized the bare cavity spectrum, we
tune the qubit into resonance with the modes to mea-
sure the transmon-cavity coupling strengths. Figure 2(a)
shows the cavity response as the coil current is swept, re-
vealing two sets of avoided crossings at ±0.27 Φ/Φ0. The
qubit position in the cavity has significant consequences
on the spectrum as the coupling strengths gm depend on
the spatial overlap of a mode and the qubit-IDT fingers.
For example, the transmon couples strongest to modes
that have anti-nodes aligned with the qubit-IDT fingers.
Zooming into a single set of avoided crossings (Fig. 2b)
reveals that the transmon indeed couples to the cavity
modes with varying strength.

Although the spectrum looks complicated, the longitu-
dinal mode couplings exhibit a simple oscillating pattern.
For example, modes 4 and 8 strongly couple, modes 2,
6, and 10 barely couple, and the odd modes all mod-
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FIG. 2. Resonantly coupled multimode CQAD system. (a) The plot shows the cavity reflection (color scale) as the transmon
is tuned by varying the applied magnetic flux. The red dashed line indicates the transmon’s flux dependent resonance. The
inset shows the expected qubit frequency (red), which has a maximum at 5.08 GHz. The green section indicates the measured
range of panel (a). (b) Zoom in on the first set of avoided crossings shown in panel (a). (c) A model for the acoustic spectrum
based on the interaction Hamiltonian, Eq. (2).

erately couple. The qubit position at Leff/4 creates a
mode-dependent coupling strength

gm = g0 sin
(π

4
m+ φq

)
(1)

where g0 is an overall coupling strength that is sinu-
soidally modulated by a four mode period, and φq is an
overall phase shift set by the small deviation in the qubit
position from Leff/4. Coupling to the transverse modes
can be written in a similar way, with the same phase φq
and a smaller g0 which can be approximated from the
cavity-IDT spectrum [27].

Using this insight, we make a simple model of the 17
modes that detectably hybridize with the qubit. Cou-
pling between the multimode cavity and qubit can be
described by an 18×18 interaction Hamiltonian

H/~ =


ω1 g1

ω2 g2

. . .
...

g1 g2 · · · ωq

 (2)

where ωk/2π are the 17 uncoupled cavity modes (11
longitudinal and 6 transverse), and ωq/2π is the qubit
ground to first excited state transition frequency. The
number of coupling terms, and consequently fit param-
eters, can be significantly reduced from 17 to 3 using
Eq. (1) and an equivalent equation for the transverse
modes. We diagonalize the Hamiltonian as a function
of the qubit frequency to obtain the hybridized modes
[27]. We found the optimum fit is g0/2π = 6.5 MHz and
φq = π/2 − 0.07 rad, which is plotted in Fig. 2(c). The
model indicates that modes 4 and 8 couple strongest to
the transmon with g4,8/2π = 6.48 MHz. Because the
coupling strength of some modes exceed the cavity FSR

(νFSR = 4.8 MHz), the device seems to operate in the
strong multimode regime.

The hallmark of the strong multimode limit consists
of many modes hybridizing with each other through a
mutual qubit coupling, while the qubit participation in
each eigenmode remains low [31]. We can use our model
Hamiltonian to infer that our device operates in this
limit. In Fig. 3(a) we plot the qubit and acoustic mode
participation in an eigenstate as the qubit frequency
varies with magnetic field. On resonance, three modes
strongly hybridize, where each mode almost equally con-
tributes to the eigenvalue, while the qubit participation
remains small (<7%). Fig. 3(b) shows agreement be-
tween the data and model for the hybridization shown in
Fig. 3(a).

Because the qubit participation is low, the well re-
solved avoided crossings do not imply that the CQAD
system reaches the strong coupling limit (g0 > {κ, γ}).
To show that it does, we measure the qubit linewidth by
operating the device in the dispersive limit [32]. We begin
by detuning the qubit far from all of the cavity resonances
(by at least 100 MHz� g0/2π), which is possible because
the mirrors that define the cavity are narrowband (Fig.
1f). We then apply two tones to the cavity-IDT, one reso-
nant with the eighth longitudinal mode of the cavity and
one nearly resonant with the qubit. By monitoring the
reflection of the tone at ω8, while varying the frequency
and power of the qubit drive we detect the qubit’s reso-
nance through the qubit-state-dependent dispersive shift
χ of the cavity resonance.

Using this dispersive measurement of the qubit’s state,
we flux tune the qubit’s resonance frequency and verify
that our CQAD system behaves according to a general-
ized Jaynes-Cummings Hamiltonian. Specifically, at each
value of applied flux, we measure the qubit frequency
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FIG. 3. Hybridization of modes in the strong multimode
regime. (a) The solid lines show the squared coefficients of
the eigenvector (participation) in the uncoupled mode ba-
sis as the qubit tunes with magnetic field. At −0.252 flux
quanta, longitudinal modes ω7 and ω8 and transverse mode
ω7t nearly equally contribute to 89% of the eigenvector. The
‘others’ trace shows the combined contribution of the remain-
ing modes. (b) The acoustic spectrum (from Fig. 2b) between
modes ω7 and ω8. The dotted line shows the eigenvalue fit
from the model corresponding to the superposition of modes
from (a).

shift as function of cavity drive power (Stark shift). In
the low power limit the Stark shift is linear with phonon
number, with a slope of 2χ [27, 33]. Figure 4(a) compares
χ measurements of the CQAD device to predictions from
two models. When ωq < ω8, our transmon is well de-
scribed by the standard transmon dispersive model [32],
which only takes the lowest three energy levels into ac-
count and ignores two-phonon transitions. We use this
regime to calibrate the single phonon power level. When
ωq > ω8 and a large phonon occupation is used, other
transition frequencies and higher order effects become
significant. To take these effects into account, we model
the dispersive shift by diagonalizing a generalized Jaynes-
Cummings Hamiltonian consisting of a 4-level transmon
and a harmonic oscillator truncated at 50 excitations [27].

With qubit spectroscopy well modeled by transmon
theory, we can use the qubit linewidth measured in the
low power limit of the cavity and qubit drives as an
upper bound on the qubit decoherence rate. Unlike a
system where a cavity fully encloses a qubit [34], the
CQAD device interacts with unconfined modes outside
of the mirror bandwidth that could limit the qubit co-
herence. However, the qubit transition can be tuned
to specific frequencies in which the emission can be
strongly suppressed. The spatial periodicity and finite
length of the qubit-IDT combine to emit SAWs with
wavelengths centered around λc. In the frequency do-
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FIG. 4. Measurements in the dispersive regime. (a) The dis-
persive shift of cavity mode ω8 versus qubit frequency (ωq).
The purple, orange, and blue dashed lines indicate ω8/2π,
ω8/2π+α, and ω8/2π+3α/2 respectively, where α = 273 MHz
is the transmon’s anharmonicity [27]. The green line shows a
prediction from the standard transmon model, and the solid
blue line shows a prediction from diagonalizing a generalized
Jaynes-Cummings Hamiltonian with a 4-level transmon. (b)
The qubit linewidth versus qubit frequency. Red points are
measurements, and the blue line shows the expected spon-
taneous emission rate of the qubit into SAWs based on the
qubit-IDT geometry, with an offset to account for the intrinsic
decoherence; i.e. processes other than spontaneous emission
that decohere the qubit. The green region indicates the mirror
bandwidth.

main, the IDT’s spatial periodicity yields a SAW emis-
sion rate with a sin2X/X2 frequency dependence, where
X = Nqπ(f−fc)/fc and Nq is the number of qubit-IDT
finger periods [27]. This spectrum consists of evenly
spaced minima where emission is prohibited due to co-
herent cancellation. The blue curve in Fig. 4(b) shows
the expected qubit linewidth as a sum of the predicted
spontaneous phonon emission rate of the transmon and a
constant offset to account for intrinsic decoherence. We
measure the linewidth as a function of qubit drive power
and extrapolate to zero power to infer the qubit decoher-
ence rate, shown as red data points. The qubit linewidth
narrows when its frequency is within an IDT band min-
ima (e.g. 3.9 GHz), and broadens by up to a factor of 3
near a maximum (e.g. 4.0 GHz). From the offset between
the predicted IDT spontaneous emission rate and the ob-
served qubit linewidth, we estimate an upper-bound on
the intrinsic qubit linewidth of γ/2π = 1.1 MHz. Thus,
the qubit can exchange energy with a SAW mode at a
rate about 6 times greater than its intrinsic decoherence
rate, reaching the strong coupling limit.

In conclusion, we have shown that superconducting
qubits and SAW cavities can reach the strong coupling
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and multimode regimes of CQAD while avoiding an in-
compatibility between qubit coherence times and disper-
sive operation. Although emulating many-body spin sys-
tems will require further improvement in qubit coher-
ence, we show that decoherence from phonon emission
can be strongly suppressed. There are multiple prospects
to move deeper into the strong coupling regime, including
use of a stronger piezoelectric substrate and surface treat-
ment to reduce loss in metal-surface interfaces. Future
work could use SAW coupled transmons to coherently
exchange quantum states between atom-like defects or
quantum dots and superconducting qubits, as proposed
in some schemes to create a quantum electro-optical con-
verter [35]. Finally, with recent progress in improving the
coherence of nano-mechanical resonators [36], these may
supplant electromagnetic resonators in certain quantum
information processing tasks, particularly where size and
isolation are high priorities.
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