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The knowledge of coordination environment around various atomic species in many functional
materials provides a key for explaining their properties and working mechanisms. Many structural
motifs and their transformations are difficult to detect and quantify in the process of work (operando
conditions), due to their local nature, small changes, low dimensionality of the material, and/or
extreme conditions. Here we use artificial neural network approach to extract the information on
the local structure and its in-situ changes directly from the X-ray absorption fine structure spectra.
We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic
and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs
allows us to quantify the changes in the iron coordination and material density, and to observe the
transition from body-centered to face-centered cubic arrangement of iron atoms. This method is
attractive for a broad range of materials and experimental conditions.

PACS numbers: 64.60.Ej, 31.15.B-, 61.05.cj

Local deviations of atomic positions from periodic lat-
tice sites often result in unique structural motifs and
functionalities both in bulk [1–4] and nanomaterials [5–7].
Local atomic displacements are also crucial in many pro-
cesses, such as chemical reactions and phase transitions,
and are often a key for explaining the properties and
working mechanisms in functional materials [2, 8–14]. If
correlation lengths for local distortions are shorter than
the size of coherent scattering region, these processes are
difficult to observe by methods sensitive to long-range
order [4, 6]. Additional challenges for detection and in-
terpretation of structural transformations arise because
they are often associated with low concentration or low
dimensionality of the material, as well as high tempera-
ture or high pressure. In many cases the actual atomic
displacements are also quite subtle, not exceeding 0.1–
0.2 Å.

Extended X-ray absorption fine structure (EXAFS)
has excellent sensitivity to local atomic displacements
(with accuracy 0.01 Å and better), elemental specificity
and sensitivity to vibrational dynamics [15, 16]. EXAFS
can be acquired in a broad range of experimental condi-
tions, thus this technique is well-suited for in-situ studies
of structural transformations [8, 9, 13, 14, 17–22]. New
approaches are sought for extending the use of EXAFS
beyond its most common application: analysis of the first
few coordination shells and moderately ordered materials
[23].

The ability to recognize patterns and correlations in
large data sets provided by recent progress in machine
learning (ML) [24–26] offers new opportunities for ex-
tracting ”hidden” information on local structure from
experimental data. We have recently demonstrated that
ML allows extraction of structure descriptors in nanopar-

ticles from their X-ray absorption near edge structure
(XANES) [27]. Here we develop an approach for the
interpretation of structural transitions and disorder ef-
fects in EXAFS data, to which sensitivity of XANES is
limited. As we show in this Letter, ML enables direct
interpretation of EXAFS features in bulk and nanostruc-
tured materials in terms of atomistic radial distribution
function (RDF) without assuming a particular disorder
model. Furthermore, it allows RDF extraction in the
longer range of interatomic distances, compared to con-
ventional analysis.

We illustrate our method on the example of bulk iron
undergoing temperature-induced phase transition. At
temperature ca 1190 K the body-centered cubic structure
(BCC) of iron α-phase (ferrite) changes to face-centered
cubic structure (FCC) of γ-phase (austenite) [28]. This
phase transformation is an integral part of many tech-
nological processes [10, 29, 30], but its mechanism is
far from being understood due to the experimental chal-
lenges in accurate characterization of the local structure
changes [29, 31, 32]. While a few high-pressure studies of
iron appeared recently [13, 14, 20–22], no EXAFS studies
of high-temperature BCC-to-FCC phase transition were
reported, which can be attributed both to the difficul-
ties of experimental measurements at such high temper-
ature, and the corresponding challenges in EXAFS analy-
sis. The latter problem is universal: at high temperatures
EXAFS amplitude is reduced significantly by enhanced
disorder effects, while anharmonicity of atomic thermal
motion results in complex, asymmetric bond lengths dis-
tributions that are difficult to account for [23]. These
challenges are common for many structural transforma-
tions. As we will demonstrate, the ML-based approach
allows reliable extraction of the structural information
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on the short- and medium-range order at temperatures
as high as 1300 K.

RDF g(R) is a key descriptor of local structure. Fol-
lowing changes in RDF one can detect and character-
ize the phase transitions [33–35], alloying [36, 37], struc-
tural motifs and their transformations in nanoparticles
[38, 39]. EXAFS χ(k) (here k is photoelectron wavenum-
ber) can be expanded as χ(k) =

∑
p χ

p(k), where sum-
mation includes single-scattering and multiple-scattering
(MS) contributions. For single-scattering [15]

χp(k) =

+∞∫
0

S2
0Ap(k,R)gp(R) sin(2kR+ φp(k,R))

dR

R2
,

(1)
where S2

0Ap and φp are scattering amplitude and phase
functions and gp(R) is partial RDF, corresponding to a
specific coordination shell. Eq.(1) can be generalized to
include MS contributions by replacing gp(R) with corre-
sponding many-atomic distribution functions [40].

Reconstruction of RDF from EXAFS spectra is an ill-
posed problem, and relies on additional constraints and
assumptions, such as (i) the shape of RDF peaks in
conventional fitting approaches [41–43], (ii) the knowl-
edge of the initial structure model and density of ma-
terial in reverse Monte Carlo (RMC) simulations [44–
46] and (iii) the non-negativity and smoothness of the
RDF in regularization-like techniques [43, 47, 48]. The
constraints that work well for one material, do not nec-
essarily perform well for another, even less so for the
transitional region between different phases. The devel-
opment of constraints and fitting models is often subjec-
tive. An alternative is to rely for this purpose on a data-
driven ML, where the parameters are optimized during
the training stage, so that the routine gives accurate re-
sults for a broad range of relevant systems.

For extraction of RDF from EXAFS we use artificial
neural network (NN) [26, 27]. The non-linear sensitivity
of NN to input features is the reason behind its unique
ability to detect subtle fingerprints of local structure. NN
is a composite function represented as a network of nodes,
where i-th node in n-th NN layer performs a non-linear
operation on all inputs x[n−1](j), weighted with param-
eters θ[n](i,j), and produces a single output x[n](i). By
optimizing θ[n](i,j), a sufficiently large NN can be trained
to reproduce reliably the relationship between inputs and
outputs. In our approach, illustrated in Fig. 1, an EX-
AFS spectrum is used to set the nodes values in the NN
input layer (Fig. 1(a)). Here, instead of discretizing EX-
AFS in k-space, or Fourier-transforming it to frequency
(R) space (Fig. 1(c))), we employ wavelet transformation
(WT) (Fig. 1(b)) [49, 50], which represents EXAFS spec-
trum in k- and R-spaces simultaneously. Only the WT
points that are sensitive to structure changes are used:
this region in k and R-space is shown in Fig. 1(b), and

R (Å)

R (Å)

χ(k)k2 (Å-2)

k 
(Å

-1
)

g(R) (Å-1)

|FT|
(Å-3)

Input

Hidden
layers

layer
Output
layer

FIG. 1. Fe K-edge EXAFS for BCC iron (a). Modulus of its
Morlet WT is shown in (b), while modulus of Fourier trans-
form (FT) is shown in (c). The dashed line in (b) indicates
the region in k- and R-space, established as the most sensitive
to structure variations. WT data are processed by NN (d), to
map features in wavelet-transformed spectra to the features
in RDF, approximated with a histogram (e).

is obtained automatically based on the analysis of vari-
ations in the training spectra. The wavelet-transformed
spectra are then processed by the nodes in the NN further
layers (Fig. 1(d)). The output layer of the NN produces
a vector, which encodes the entire RDF (Fig. 1(e)), ap-
proximated with a histogram in a given R-range between
Rmin and Rmax: each NN output node yields the height
of a particular histogram bin.

The crucial part of NN analysis is the training pro-
cess. Here, we supply as input to the NN a set of EXAFS
spectra χt, for which the corresponding RDFs gt(R) are
known. This true gt(R) is compared with the NN output
g̃t(R), and the NN weights θ[n](i,j) are updated, so that
the difference between g̃t(R) and gt(R) is minimized for
all training spectra. It is not feasible to construct such
training set based on experimental measurements. Note
also that to have a reliable, unbiased NN, the training
set should represent a large portion of configurational
space, not limited to a relatively small number of ex-
perimentally available structures. To solve this prob-
lem we use classical molecular dynamics (MD) to cre-
ate ca 3000 training examples, corresponding to different
phases of iron and different degrees of disorder. Knowing
the atomic trajectories in MD simulations, we calculate
the corresponding RDFs, as well as the corresponding
time- and ensemble-averaged EXAFS (MD-EXAFS). As
we have demonstrated before [46, 51–53], MD allows one
to generate EXAFS spectra in a qualitative agreement
with experimental data. A very accurate agreement be-
tween MD-EXAFS and experimental EXAFS is not re-
quired here, since MD-EXAFS data are used solely for
the purpose of establishing the relation between EXAFS
and RDF features, and not for direct matching with ex-
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FIG. 2. Fourier-transformed experimental and simulated
(with MD and RMC methods) Fe K-edge EXAFS for bulk
iron at 300 K and 1273 K temperatures. Contribution of MS
paths to the total MD-EXAFS is shown separately. Spec-
tra corresponding to 1273 K are shifted vertically and mul-
tiplied by 5. Insets show the temperature-dependencies of
MD-EXAFS for BCC and FCC structures (only the main FT-
EXAFS peak).

perimental data [52]. For MD we used Sutton-Chen type
potential [54]. To calculate MD-EXAFS spectra (Fig. 2)
we used the same procedure as in [46, 52]. MD simu-
lations were carried out for iron with BCC, FCC and
hexagonal close-packed (HCP) structures in the temper-
ature range from 10 K up to 1500 K. Fig. 2 compares
the calculated MD-EXAFS with the experimental data
for BCC iron at room temperature (Fig. 2(a)) and FCC
iron at 1273 K (Fig. 2(b)). MD describes reasonably
the experimental room temperature EXAFS, and gives
qualitative agreement with the high temperature data.
In the latter case the disorder in the first coordination
shell is underestimated in simulations, as evidenced by
the higher main FT peak. The temperature-dependent
MD-EXAFS spectra are shown in the insets, and were
used for NN training, and also for validation of its accu-
racy (see Supplemental Material (Figs. S1 and S2))[55].

The experimental Fe K-edge EXAFS, reported in
Fig. 2, were recorded in-situ in transmission mode at
ELETTRA synchrotron [66]. A 40% detuned Si (111)
double-crystal monochromator was used. The intensi-
ties of the incident and transmitted X-ray beams were
measured by two ionization chambers filled with argon
and krypton gasses. High purity iron foil (Goodfellow,
99.99+%) with the thickness of 4 µm was used as a sam-
ple. The sample temperature was controlled in the range
from 300 to 1273 K using the L’Aquila-Camerino vacuum
glass furnace [67]. To avoid any contact with the graphite
foil heater of the furnace (the graphite was necessary for
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FIG. 3. Experimental Fe K-edge EXAFS in k-space (a) and
R-space (b) for temperatures between 300 and 1273 K. Ar-
rows in (a) indicate the features in low k-range, whose change
implies the phase transition from the BCC to FCC structure
(inset in (b)). Arrows in the inset show the atomic pairs con-
tributing to the main FT-EXAFS peak in both structures.

transmission X-ray experiment) and to prevent sample
from oxidation and carbidization that plague most high
temperature experiments with pure iron, the sample was
gently packed between two BN pellets. Note that BN is
thermally stable up to ca 3200 K [68], but reacts with
iron at ca 1400 K [69].

Temperature-dependencies of the obtained experimen-
tal spectra are shown in Fig. 3. The good signal-to-noise
ratio is observed in the k-space data (Fig. 3(a)) even at
the highest temperature. The lack of features at low
R-values (around ca 1 Å) in Fourier-transformed data
(Fig. 3(b)) together with the stability of all XANES fea-
tures (Supplemental Material, Fig. S3) give us confidence
that metallic state of iron is preserved in our measure-
ments.

An indirect indication of the transition from BCC to
FCC structure (see the inset in Fig. 3(b)) is the change in
the features at low k-values, marked in Fig. 3(a). These
features cannot be included in EXAFS analysis due to
the artifacts of background subtraction and inaccuracies
of EXAFS theory in this region. The changes in features
at higher k-values (k > 3 Å) and in R-space are subtler
and masked by temperature effect. In particular, both
BCC and FCC structures yield a single nearest neigh-
bor peak to the R-space spectrum between ca 1.5 Å and
3 Å, Fig. 3(b). It is known, however, that these two
structures have different nearest neighbor RDFs: in the
ideal BCC structure with lattice constant a0 each atom
is surrounded by 8 atoms at the distance a0

√
3/2, and

6 atoms at the distance a0. In the ideal FCC structure
all atoms are surrounded by 12 nearest neighbors at the
same distance a0/

√
2. The corresponding pairs of atoms

are shown in the inset of Fig. 3(b).
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In Fig. 4 we apply NN, trained on MD-EXAFS spec-
tra, to the analysis of experimental data. RDFs, recon-
structed by NN from experimental Fe K-edge EXAFS
in bulk iron are shown in Fig. 4(a) (for selected tem-
peratures) and in Supplemental Material, Fig. S4. The
obtained RDFs g̃(R) are smooth and non-negative func-
tions for all values of R. As expected, at low tempera-
ture the RDF between 2 and 4 Å is split in two peaks, in
agreement with the BCC-type structure. At higher tem-
peratures RDF peaks broaden and merge together. To
analyze quantitatively the obtained RDFs and to detect
BCC-to-FCC phase transition, we calculated the run-

ning coordination number NRCN(R) =
∫ R

0
g̃(r)dr [70].

NRCN(R) yields a plateau in-between coordination shells,
which can be used to calculate the coordination num-
bers N of a single shell or a group of adjacent shells.
For example, N1 = NRCN(R1), where R1 is the min-
imum of g̃(R) in the R-range between 2.5 and 3.5 Å,
includes contribution of the first coordination shell for
FCC iron, and first two coordination shells in BCC iron,
thus is equal to 12 in FCC-type and 8 + 6 = 14 in BCC-
type material. The obtained temperature dependence
of N1 is shown in Fig. 4(b), and demonstrates a sharp
transition from BCC-like to FCC-like environment be-
tween 1173 and 1203 K. Simultaneously, the average den-
sity of the structure sharply increases, as evidenced by
the integrated contribution of distant coordination shells
N2 = NRCN(Rmax) (Fig. 4(c)). Sharp transformation
from BCC-like to denser FCC-like structure in both cases
agrees with the expected behavior for structure parame-
ters in the first-order phase transition [29].

In summary of this part, the NN approach succeeded
to obtain local structure information in iron in the broad
temperature range and with much better detail than con-
ventional EXAFS analysis. While the construction of the
training sets took days of CPU time and the training of
NN - hours, the calculation of the RDF for any given EX-
AFS spectrum using the pre-built NN took only a few
seconds. As an additional validation of our NN-based
method, we performed RMC simulations, as described in
[46, 50], to independently obtain the RDF. Unlike it is for
our NN method, RMC simulations require several CPU-
weeks of calculations for each EXAFS spectrum and a-
priori knowledge of crystallographical structure: here for
choosing between BCC and FCC models we use NN re-
sults, while the lattice parameters were taken from [28].
The agreement between the RMC-modeled and experi-
mental EXAFS is shown in Fig. 2 and demonstrates the
high accuracy of the RMC-generated structure models
both at room temperature (BCC structure) and high
temperature (FCC structure). On the other hand, it
shows that our experimental EXAFS data agree with the
average structure model from XRD [28], and is also a
testimony to the success of our experimental procedure
that we used to ensure that no unwanted Fe-species are
present in our sample.

The RDFs, obtained from NN analysis, are compared
with RMC results in Fig. 4 and Fig. S4, and confirm high
accuracy of our NN-based method: even at the highest
temperature the asymmetric shapes of RDF peaks up to
6 Å are reproduced reliably by NN. Note that the current
6 Å limit is imposed only by the number of photoelectron
paths, included in EXAFS calculations, and our analy-
sis, in principle, can be extended to even more distant
coordination shells.

Another important point is that NN-based analysis
performs substantially better than a trivial matching of
theoretical spectra with experimental data. One may
imagine that instead of being used for NN training, MD-
EXAFS data could be compared directly with experi-
mental EXAFS, and the RDF for the model that gives
the best agreement with experiment is then claimed to
be the true RDF in experimental sample. Results of such
matching approach are shown in Fig. S4. While it gives
comparable results to our NN method at low tempera-
tures, it fails at higher temperatures, where in attempt
to describe the temperature effect in the dominating first
coordination shell contribution it allows significant in-
accuracies in the contributions of distant coordination
shells.

Since in bulk iron the FCC structure is observed only
at high temperature, to demonstrate the ability of our
method to recognize well-ordered low-temperature FCC-
type structures, we apply it to Ni K-edge EXAFS in
bulk Ni, which has FCC structure at room temperature
(Fig. 4). Let us clarify here that our NN was trained
on theoretical Fe K-edge spectra only. However, since Ni
and Fe are neighbors in the Periodic Table, their photo-
electron scattering properties are close, and one can use
the NN, trained on iron data, to analyze nickel data as
well. As shown in Fig. 4, our NN correctly predicts the
FCC-type structure for Ni, and the shapes of RDF peaks
are in an excellent agreement with RMC results. One can
also find the one-to-one correspondence between the RDF
features in the result for Ni at room temperature and
Fe at high temperature. Similar reasoning allows us to
employ our NN to analyze Co K-edge EXAFS from bulk
cobalt that, at room temperature, assumes the HCP-type
structure. As shown in Fig. 4, NN gives excellent results
in this case as well. Importantly, it can detect the split-
ting of the RDF peak between ca 4.5 and 5.0 Å, which
distinguishes the RDF of HCP-type cobalt from that of
the FCC-type Ni. The ability of our NN to detect the
differences between the FCC and HCP structures from
EXAFS spectra is remarkable, since it is almost impos-
sible to detect this subtle difference by other approaches
to EXAFS analysis.

To summarize, the neural network-based method en-
ables accurate and fast extraction of structural infor-
mation from experimental EXAFS. The advantage of
this approach over existing analysis methods was demon-
strated on the example of the in-situ study of high-
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FIG. 4. (a) RDFs for iron at 300, 900 and 1273 K, and for
nickel (FCC) and cobalt (HCP), obtained by NN from exper-
imental EXAFS. Dashed line - averaged result from 10 inde-
pendently trained NNs, shaded regions show the standard de-
viation of these results and characterize the uncertainty. For
comparison the results of RMC simulations are also shown.
R1 value is shown as vertical dashed line. Temperature-
dependencies of integrated RDFs N1 and N2 are shown with
empty circles in (b) and (c). Dashed lines - guide for eye.

temperature structural transition from ferrite to austen-
ite. The NN-based method can immediately be applied
to the local structure analyses in Fe, Ni, Co, Mn metals,
as well as in their alloys. It can also be easily gener-
alized to other systems (including non-metallic, multi-
component materials). We envision that an important
application of this method will be in-situ monitoring of
structural transformations in nanostructured materials.
We believe also that the method, developed here for de-
ciphering EXAFS spectra, will be useful for the analy-
sis of other structure-sensitive data, e.g., for analysis of
pair-distribution functions from the total X-ray or neu-
tron scattering data [33, 71], where one faces similar chal-
lenges in data quantitative interpretation as in EXAFS
spectroscopy. The trained NNs can be shared (since they
are explicit functions), and we anticipate that an openly
available library of NNs, trained for specific tasks (e.g.,
processing of EXAFS and XANES data in different ma-
terials) can be developed, allowing the researchers in the
field to analyze their own data without the need to do
the tedious NN training process themselves.
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