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In a magnetically confined plasma with a stochastic magnetic field, the dependence of the perpen-
dicular viscosity on magnetic fluctuation amplitude is measured for the first time. With a controlled,
∼ 10-fold variation in fluctuation amplitude, the viscosity increases ∼ 100-fold, exhibiting the same
fluctuation-amplitude-squared dependence as the predicted rate of stochastic field line diffusion
[Rosenbluth et al., 1966]. The absolute value of the viscosity is well predicted by a model based on
momentum transport in a stochastic field [Finn et al., 1992], the first in-depth test of this model.

Viscosity characterizes the rate of momentum trans-
port within a fluid and plays an important role in fluid
stability. The viscosity can be expressed in terms of
its dynamic or absolute value, but also in terms of its
kinematic value, normalizing the dynamic viscosity to
the mass density. For a two-fluid plasma consisting of
electrons and ions, momentum is carried primarily by
the ions, and viscosity affects the rate of ion momentum
transport. If the plasma is embedded in a magnetic field,
the viscosity is anisotropic. The viscosity in the direction
parallel to the field is the same as that for an unmagne-
tized plasma, but perpendicular to the field, the viscosity,
and momentum transport, are reduced.

The classical lower bound on perpendicular or cross-
field viscosity in a magnetized plasma was derived by
Braginskii [1] for the case of viscosity dominated by ion-
ion collisions. The Braginskii viscosity has been assumed

to apply in many astrophysical and laboratory plasmas,
e.g., the flaring solar corona [2], clusters of galaxies [3],
and the tokamak fusion plasma [4]. But measurements
confirming the relevance of the Braginskii viscosity have
been rare. One exception was in a few-eV screw-pinch
plasma column where the ion viscosity agreed with the
Braginskii value to within a factor of two [5].

Measurements of the perpendicular viscosity have also
been made in the reversed-field pinch (RFP) plasma
[6, 7], a high-temperature toroidal magnetic fusion con-
figuration that can exist in a steady fashion with a
stochastic magnetic topology, where field lines wander
chaotically, over much of the plasma volume. The mea-
sured viscosity was as much as 100 times the Bragin-
skii value. Stochastic magnetic topologies can also occur
in other configurations such as the tokamak, stellarator,
and spheromak, e.g., Refs. [8–10]. Stochasticity in the
tokamak, for example, occurs locally in the plasma edge
when applying an external magnetic perturbation [11]
and globally during disruptions [12], wherein magnetohy-
drodynamic (MHD) instabilities lead to premature ter-
mination of the discharge [13].

In astrophysical plasmas, viscous momentum transport

in stochastic magnetic fields occurs, for example, in ac-
cretion disks [14, 15]. Another astrophysical phenomenon
where viscosity and stochastic magnetic fields may play
a role is when a so-called cold front propagates into a
magnetized medium [16, 17].

Nonlinear visco-resistive MHD computation is used for
both astrophysical and laboratory plasmas to model sce-
narios with magnetic stochasticity, e.g., Refs. [14, 18–21].
However, while the resistivity is sometimes provided by
measurements, the viscosity must be assumed.

A model was proposed by Finn et al. [22] to describe
the transport of momentum and particles in a stochas-
tic field. Motivated to help explain the physics of the
transition to the high-confinement mode in tokamaks,
momentum in the model is transported along stochas-
tic field lines by sound wave propagation. The kinematic
viscosity is assumed to be proportional to the square of
the magnetic fluctuation amplitude, utilizing the quasi-
linear stochastic magnetic diffusion coefficient derived by
Rosenbluth et al. [23]. While the magnetic diffusion co-
efficient has been tested in the context of electron heat
transport in both astrophysical [24, 25] and laboratory
[26, 27] plasmas, there has been no in-depth test of the
Finn model for momentum transport. In their paper,
Finn et al. suggest that their model could be tested in
a tokamak in which internal magnetic fluctuations are
varied via an external magnetic perturbation.

In this Letter, we adopt an alternative approach, com-
paring measured and modeled viscosities in stochastic
RFP plasmas wherein the amplitude of the underlying
magnetic fluctuations is varied both through magnetic
self-organization and through external inductive control.
The fluctuations arise due to tearing modes (TMs) driven
unstable by the gradient in the plasma current. The vis-
cosity is measured experimentally via perturbations to
the momentum profile: acceleration with an insertable
biased probe [6] and deceleration with a resonant mag-
netic perturbation (RMP) [28, 29]. We thereby show
that (1) with a ∼ 10-fold variation in fluctuation am-
plitude, the viscosity varies ∼ 100-fold, exhibiting the
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same fluctuation-amplitude-squared dependence as the
predicted rate of stochastic field line diffusion, and (2)
the absolute value of the viscosity is well predicted by
the Finn model.
Experimental data were gathered in the Madison Sym-

metric Torus (MST) [30] RFP. This toroidal device has
major and minor radii of R = 1.5 m and a = 0.52 m.
Deuterium (D) plasmas were Ohmically heated with a
toroidal plasma current ranging from 50 to 400 kA. The
line-averaged electron density was varied from 0.3–1.5
×1019 m−3. The TM amplitudes and phase velocities
were measured by magnetic pick-up coils at the plasma
boundary. The dominant TMs have poloidal mode num-
berm = 1 with different toroidal mode numbers n. These
modes co-rotate with the plasma [6, 31], resembling the
large TM amplitude case in the tokamak [32]. Each mode
is resonant where the safety factor, q ≡ (rBφ)/(RBθ) =
m/n, where Bφ and Bθ are the equilibrium toroidal and
poloidal fields. At each resonant surface, a magnetic is-
land forms, and island overlap leads to stochasticity. The
degree of overlap increases with the amplitudes of neigh-
boring TMs. The amplitude of each TM at its resonant
surface is calculated from the radial eigenfunction [29].
Three different magnetic equilibria were employed in

this work, characterized by the edge safety factor: q(a) =
0, -0.07, and a time-varying equilibrium with q(a)min =
−0.2. In the q(a) = 0 plasmas, the fluctuation level de-
creases through self-organization with increasing plasma
current, and the q(a) = −0.07 plasmas exhibit an addi-
tional spontaneous reduction in the fluctuation level [33].
In the q(a)min = −0.2 case, the fluctuations are still fur-
ther reduced by application of inductive modification of
the current profile [34, 35].
The classical width of a magnetic island, wmn =

4
√

rmn|br,mn|/(nBθ|q′mn|), where br,mn is the radial com-
ponent of the tearing magnetic fluctuation, q′mn is a radial
derivative, and all quantities are defined at the resonant
surface, minor radius rmn. The degree of overlap be-
tween two islands, (m,n) and (m′,n′), can be quantified
by the Chirikov parameter, s [36]. Island overlap (s > 1)
causes the field lines to become entangled, and the radial
excursion ∆r over a distance L along a field line can be
described by a stochastic process. Averaging over several
steps, the diffusion coefficient for a magnetic field line is

Dmag = < ∆r2 > /2L. (1)

In a collisionless plasma, transport can occur directly
along a single field line over the whole stochastic re-
gion. In the MST plasmas described here, the collision-
less regime [22, 37] is a reasonable approximation, since
the range of ion mean free path (1 - 30 m) is at a min-
imum similar to the autocorrelation length [38], Lc ≈ 1
m [39].
The diffusion of electrons in a stochastic magnetic field

was described by Rechester and Rosenbluth (R-R) [37],
who posited that the heat diffusivity in the collisionless

limit, χe = veDmag R, where ve is the electron thermal
velocity, and

Dmag R = Lc

∑

m,n

(

br,mn

B

)2

, (2)

is the magnetic diffusion coefficient in the quasilinear ap-
proximation [23]. Here, B is defined at rmn. The TMs
that overlap are included in the sum, which we shall
henceforth denote simply as (b/B)2. The R-R model as-
sumes s >> 1.
Finn et al. [22] assumed a similar model for the trans-

port of momentum, but the transport occurs due to
sound wave propagation. Accordingly, the kinematic vis-
cosity in a stochastic field is

ν⊥,st = csDmag R. (3)

We calculate the sound speed, cs, using

cs =
√

(γeZkBTe + γikBTi)/M. (4)

The electron temperature, Te, was measured with a
Thomson scattering diagnostic [40]. The ion tempera-
ture, Ti, was inferred from earlier spectroscopic measure-
ments in similar MST plasmas [41]. We assume a pure
D plasma with isothermal electrons (γe = 1) and one de-
gree of freedom for the ions (γi = 3). Due to impurities,
the effective charge and mass are moderately higher than
for a pure D plasma, but the impact is muted given the
dependence of Z and M in the sound speed.
To calculate Dmag R [Eq. (2)], we require the values of

Lc and b/B. The autocorrelation length was calculated
using the model in Ref. [38], which had agreement with
numerical calculations for the RFP [42]. We estimate
Lc = π/∆k‖ ≈ 1.2± 0.4 m, for all scenarios. The paral-
lel spectral width ∆k‖ = ∆m/a(Bθ/B) +∆n/R(Bφ/B),
where poloidal mode spectrum width ∆m = 0.5 had the
best agreement with magnetic probe measurements, and
the toroidal width is ∆n ≈ 4 [39]. In the calculation
of b/B, we used the time-averaged rms amplitude of the
three innermost TMs whose islands overlap. Inclusion of
additional TMs, which are of lower amplitude, has only
a small effect on Dmag R. We calculated the 1σ error
in ν⊥,st by propagating uncertainties through Eq. (2–4).
We note that neither the probe nor the RMP affect the
measured mode spectrum, and therefore Dmag R is also
unaffected. This is in contrast to the tokamak, where
RMPs can destabilize additional TMs [43], and biased
probes either suppress or destabilize the TMs [44].
Experimentally, we determined the viscosity by mod-

eling the radial transport of the perturbed momentum.
The transport was modeled by solving the toroidal com-
ponent of the momentum equation

ρ
∂∆vφ
∂t

=
1

r

∂

∂r

(

rµ⊥
∂∆vφ
∂r

)

+ Tinjected, (5)
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where the injected torque density (Tinjected) is either
from the probe or the RMP, ρ is the mass density, ∆vφ is
the perturbed radial profile of the toroidal plasma flow,
and µ⊥(r) is the perpendicular dynamic viscosity. The
dynamic viscosity is assumed to be spatially constant,
µ⊥ = ρ0ν⊥, where the central mass density, ρ0, is deter-
mined from measurement. The electron density profile,
measured with a multi-chord interferometer [45], is well
approximated by ne = ne0[1 − (r/a)3]. The deuteron
density is assumed equal to the electron density. The
kinematic viscosity (ν⊥) is the only free parameter in
the model, and its value is chosen to match the experi-
mental momentum transport. A flat viscosity profile is
suggested as a good approximation by the fact that the
Dmag profile is typically flat in the core [26, 46], as are
the temperature and density profiles. And the fit viscos-
ity is most sensitive to the value in the core [29]. Hence,
the fit value represents approximately the core average.
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FIG. 1. (a) Probe bias voltage and current, (b) CIII toroidal
flow and modeled plasma flow at r/a = 0.81, (c) toroidal
phase velocity of central (1,5) TM and modeled plasma flow at
(1,5) resonant surface, (d) measured (data points) and mod-
eled perturbed velocity profile at three time intervals, centers
of which indicated by vertical lines in (a) - (c). Experimental
profiles in (d) based on change in rotation of n = 5−10 modes.
Modeled profiles represent change in plasma flow. The 1σ er-
ror bars represent change in each time window. The phase
velocities of the core modes (n=5–10) are used to constrain
the modeled ∆vφ(r), whereas the CIII velocity is shown only
as a visual test of the modeling of the edge.

The plasma response to the biased probe [6] is shown in

Fig. 1, from an ensemble average of 20 shots with q(a) =
0, Iφ = 200 kA, and < ne >≈ 0.7 × 1019 m−3. Inserted
to r/a ≈ 0.8, the probe is biased for 10 ms to ∼ 0.4 kV
relative to the MST vacuum vessel, resulting in a drawn
current ∼ 1 kA [Fig. 1(a)] and a J×B torque imposed
on the edge plasma. The toroidal flow in the edge [Fig.
1(b)], inferred from the Doppler shift of the CIII impurity
emission, responds quickly to the bias and saturates. The
core flow, represented by the velocity of the innermost
resonant (1,5) TM, increases slowly throughout the bias
period [Fig. 1(c)]. After the biasing , the edge once again
responds more promptly than the core.
The slowing-down time scale of the core flow, τsd, is

inversely proportional to the viscosity [6], ν⊥ = d2/τsd,
where d is the radial extent over which momentum dif-
fuses. The best fit of the deceleration curve to the func-
tion vφ = A exp(−t/τsd) + v0 has τsd = 3.3 ms. This is
about 1.3 times longer than that measured previously in
MST hydrogen (H) plasmas with a similar equilibrium
[6]. Assuming that d and Dmag R are the same with H
and D, Eq. (3) predicts the ratio of the slowing-down
times to be τsd D/τsd H = cs H/cs D ≈ 1.3, suggesting
that the difference in τsd could be due to the difference
in plasma sound speed.
The radial transport of momentum during bias is de-

picted by the change in the velocity of TMs resonant at
different radii [Fig. 1(d)]. Initially, the CIII ions and
the TMs closest to the probe are accelerated. Later, all
the core TMs have been accelerated through the viscous
transfer of momentum.

Table I. Experimental and model viscosities for different
plasma conditions. The Chirikov parameter (s) was calcu-
lated for two innermost TMs included in Dmag R. Errors are
1σ standard deviation.

Method q(a) Iφ cs b/B s ν⊥,exp ν⊥,st ν⊥,Brag.

(kA) (km/s) (%) (m2/s) (m2/s) (m2/s)

Probe 0 49 90 2.3 3.5 55± 12 56± 20 3.93± 1.06

RMP 0 125 160 1.3 2.3 30± 9 30± 5 0.34± 0.11

Probe 0 124 160 1.2 2.3 30± 8 28± 10 0.40± 0.11

Probe 0 200 200 1.0 2.2 15± 5 25± 10 0.14± 0.04

RMP 0 208 190 1.0 2.2 21± 6 24± 5 0.18± 0.06

RMP 0 302 220 0.9 2.0 20± 5 24± 5 0.09± 0.02

RMP 0 396 250 0.8 1.9 17± 6 19± 5 0.05± 0.01

RMP -0.07 338 260 0.6 1.6 10± 3 13± 2 0.04± 0.00

RMP -0.2 182 210 0.2 1.2 0.6± 0.3 1.1 ± 0.7 0.14± 0.03

The transport depicted in Fig. 1 was modeled with
Eq. (5). The torque density produced by the probe dur-
ing the bias is assumed to fall off as 1/r from the probe
tip to the plasma boundary. This was motivated by the
fact that the current density decreases as 1/r and that
the magnetic field only changes slightly (±5%) in this
region. This torque was adjusted such that the mod-
eled and experimental velocity profiles match at the end
of the biasing period. After biasing, ν⊥ is the only free
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parameter in the model, and by matching the experimen-
tal core deceleration curve [Fig. 1(c)] it was found that
ν⊥ = 15±5 m2/s. The uncertainty includes the change in
ν⊥ when the modeled plasma density is varied within the
experimental 1σ standard deviation. Using probe bias,
we measured ν⊥ in q(a) = 0 plasmas at three plasma
currents (Table I). The viscosity increases from 15± 5 to
55 ± 12 m2/s as Iφ drops from 200 to 49 kA. We show
below that this can be explained by the self-organized
increase in b/B as Iφ decreases.
Complementing the biasing technique, we utilized

braking with the RMP technique [29, 47], in which an ex-
ternal m = 1 RMP produces an electromagnetic torque
at each TM resonant surface [48]. Injected through a
cut in MST’s conducting shell, this torque acts to reduce
the phase difference between the rotating TMs and the
static RMP. Utilization of the RMP expands the parame-
ter space accessible for this work to higher-energy-density
plasmas that would damage the inserted biased probe.
And applying the RMP and biased probe to the same
set of plasma conditions provides a valuable cross-check
on the measured viscosity.
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FIG. 2. (a) Applied m = 1 RMP amplitude, (b) and (c)
toroidal phase velocities of (1,5) and (1,6) TMs.

In Fig. 2 are waveforms from a single discharge with
an RMP. The plasma parameters [q(a) = 0, Iφ = 200
kA, and < ne >≈ 1.0 × 1019m−3] were similar to those
for the data in Fig. 1, but with higher density. With
application of the RMP, the core rotation velocity, repre-
sented here by the velocity of the two innermost resonant
m = 1 TMs, gradually slows and finally drops to zero.
The TM velocities and plasma flow were modeled by solv-
ing the momentum equation [Eq. (5)], as described in
Ref. [29]. Similar to the biased-probe modeling, the only
free parameter here is the viscosity, and it is estimated
by matching the experimental deceleration of the TMs.
Figure 2(b-c) shows, for example, the model fit to the
experimental velocity of the two largest TMs.
Averaging over ten similar discharges like that in Fig.

2, the model-required viscosity is ν⊥ = 21±6m2/s, where

the uncertainty is the 1σ standard deviation including
both the uncertainty in the model input and the shot-
to-shot deviation in the viscosity. This value, within the
uncertainty, is consistent with the value measured using
the biased probe in similar plasma conditions. In the
same fashion, the RMP was used to measure the viscosity
in five additional plasma conditions, each with a different
b/B. The results are listed in Table I, showing that ν⊥
generally increases with b/B. The table also shows that
at Iφ ≈ 125 kA, the values of ν⊥ measured with the RMP
and probe are identical.
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FIG. 3. For RMP (circles) and probe (diamonds) cases, (a)
measured viscosity divided by plasma sound speed versus nor-
malized magnetic fluctuation amplitude and (b) measured vis-
cosities versus predictions by Eq. (3). In (a), best fit of func-
tion y = Cxα is solid line with uncertainty estimate indicated
by gray area. Different symbol-color used for each plasma
scenario: q(a)min = −0.2 current profile control (magenta),
q(a) = −0.07 (red), q(a) = 0 at 400kA (blue), 300kA (or-
ange), 200kA (yellow), 125kA (green) and 50kA (cyan).

All of the probe and RMP measurements of viscos-
ity are compared in Fig. 3 with the models of Rosen-
bluth et al. and Finn et al.. The dependence of the
viscosity on (b/B) is shown in Fig. 3(a), where the mea-
sured viscosity is divided by the plasma sound speed (Ta-
ble I). The best fit to the experimental data, Dmag =
(1.07±0.12)(b/B)2.13±0.19, is in good agreement with the
expectation (b/B)2 for the quasilinear stochastic mag-
netic diffusion coefficient [Eq. (2)]. And as shown in
Table I, (b/B) spans ∼ 10-fold while the experimental
viscosity spans ∼ 100-fold. In Fig. 3(b), the measured
viscosities are compared directly to the predictions, ν⊥,st,
of the Finn model. Within the estimated uncertainties,
shown numerically in Table I, the viscosities agree in
all cases, consistent with the magnetic fluctuations and
stochasticity being responsible for the anomalous trans-
port of momentum. This is also consistent with a pre-
vious estimate in stochastic hydrogen MST plasmas [6],
where a single measured viscosity agreed reasonably well
with the Finn model.

In modeling the momentum transport [Eq. (5)], the
intrinsic momentum source was not included, but this
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would only affect our conclusions if the probe or RMP
changes the source. The likely source is the fluctuation-
based kinetic stress [49], and (1) neither perturbative
technique has much effect on the fluctuation amplitudes,
and (2) the viscosity measured with the two techniques
is about the same, even though their impact, if any, on
the kinetic stress might be expected to differ.

As expected, the experimental viscosities are all larger
than the classical predictions, ν⊥,Brag = 3niTi/(10ω

2

i τi),
where ωi and τi are the ion Larmor frequency and colli-
sion time [1]. It is, however, interesting that the viscosity
in the case with the lowest fluctuation amplitude is within
a factor of four of ν⊥,Brag (Table I), suggesting that this
case is near the limit of the domain where a stochastic
field can be assumed. This is consistent with the near-
threshold island overlap criterion (s = 1.2) and the fact
that the stochastic prediction for the viscosity is nearly
twice the experimental value (Table I).

In summary, our results confirm for the first time that
the kinematic viscosity in a stochastic magnetic topol-
ogy can be modeled by momentum propagated by sound
waves along the magnetic field lines. This work is appli-
cable to tokamak, stellarator, RFP and other laboratory
plasmas, along with a variety of astrophysical plasmas,
in which magnetic stochasticity plays an important role.
Visco-resistive MHD modeling of these plasmas can now
be better constrained and should therefore be more real-
istic, contributing further to the predictive capability of
the science of high-temperature, magnetically confined
plasmas.
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DE-FC02-05ER54814. Data shown in this paper can be
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