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We measure the static frictional resistance and the real area of contact between two solid blocks
subjected to a normal load. We show that following a two-step change in the normal load the
system exhibits nonmonotonic aging and memory effects, two hallmarks of glassy dynamics. These
dynamics are strongly influenced by the discrete geometry of the frictional interface, characterized
by the attachment and detachment of unique microcontacts. The results are in good agreement with
a theoretical model we propose that incorporates this geometry into the framework recently used
to describe Kovacs-like relaxation in glasses as well as thermal disordered systems. These results
indicate that a frictional interface is a glassy system and strengthen the notion that nonmonotonic
relaxation behavior is generic in such systems.

Under constant load, the static coefficient of friction
of rock [1], paper [2], metal [3], and other materials
[4, 5] grows logarithmically ad infinitum. This aging phe-
nomenon is central to frictional systems ranging from
micro-machines [6] to the earthquake cycle [7–9], and
is described by the Rate and State Friction laws [10–
12], where aging is captured by the evolution of a phe-
nomenological state parameter. Because most solids
have microscopically rough surfaces, when two bodies are
brought together, their real area of contact is localized to
an ensemble of microcontacts, which sets the frictional
strength [13–16]. Thus, the strengthening of the inter-
face is frequently attributed to a gradual increase of the
real area of contact [4, 17]; however, recent compelling
evidence suggests that such an effect could also result
from the strengthening of interfacial bonds [18, 19].

Recently [20], it was shown that some systems which
exhibit slow relaxation and logarithmic aging can also
evolve non-monotonically under static conditions, ex-
hibiting a memory effect, similar to the canonical mem-
ory effect discovered by Kovacs in polymers [21]. Sev-
eral glassy and disordered systems ranging from polymer
glasses [21] to crumpled paper [20] and granular piles
[22] exhibit Kovacs-like non-monotonic relaxation. Pre-
vious observations of de-aging [23] in real area of contact
suggest that unlubricated frictional interfaces may also
belong to this universality class. If so, this may indicate
that dynamics of friction exhibit a memory effect that is
richer than previously considered; these dynamics cannot
be fully captured by Rate and State with a single state
parameter, or indeed any theory with a single degree of
freedom.

Here we experimentally demonstrate that a dry fric-
tional interface indeed exhibits a Kovacs-like memory ef-
fect. Using real time optical and mechanical measure-
ments, we observe that under a constant load, both the
static coefficient of friction and the real area of contact
may evolve non-monotonically. Additionally, in contrast
to the prevailing paradigm, the two physical quantities
do not always evolve in tandem; in fact, one may grow

while the other shrinks. We further show that this dis-
crepancy arises from the non-uniform evolution of the
contact surface. We propose a model that generalizes
the geometrical descriptions of contact mechanics to in-
clude memory effects and the glassy nature of frictional
interfaces.

Frictional dynamics are typically described through
a force measurement, but understanding the underly-
ing mechanisms requires observation of the 2D interface
where shear forces are generated. We thus simultane-
ously measure the static friction coefficient and real area
of contact resolved across an entire interface. Our biaxial
compression and translation stage is described schemat-
ically in Fig. 1(a). The interface is formed between two
laser-cut PMMA (poly methyl-methacrylate) blocks with
0.5 to 4 cm2 of nominal contact area. Sample surface
roughness ranges from the original extruded PMMA (11
nm RMS) to surfaces lapped with 220 grit polishing pa-
per (1.8 µm RMS) [24]. A normal load, FN , is applied
to the top sample through a spring and load cell, and
the bottom sample is held by a frame on a horizontal
frictionless translation stage. A shear force, FS , is ap-
plied to the bottom frame at the level of the interface
by advancing a stiff load cell at a constant rate of 0.1 or
0.33 mm/s. We define the coefficient of static friction,
µS as the peak shear force value prior to interfacial slip,
divided by FN . The effect of frictional memory is sub-
tle, and observing it requires many runs, systematically
varying multiple parameters. However, sliding wears the
samples, which causes µS to vary systematically over the
course of many measurements, as shown by the raw data
(red) in Fig. 1(b). In order to differentiate the system’s
response to a change in the experimental parameters from
its slow, background evolution due to wear, we implement
a randomization protocol. We test all points of interest
in our parameter space once in a random order, then
again in a different random order, and so on, such that
every point is visited a minimum of 25 times. Addition-
ally, all cycles are normalized to have the same mean,
as shown by the adjusted data (black) in Fig. 1(b). Fi-
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nally, to minimize the uncertainty associated with initial
placement and loading of the samples [25], we follow two
pre-stress protocols [26], consistent with previous exper-
iments [25, 27, 28]

The real area of contact between the blocks, AR, is
measured by using total internal reflection (TIR) [29, 30].
Blue light (473 nm) is incident on the top surface of the
bottom sample at an angle below the critical angle for
TIR, allowing light to escape into the top sample only
through points of contact, as depicted in the bottom of
Fig. 1(a). When imaged through the top sample, the
brightness of the interface corresponds to real contacts,
as shown in the inset in Fig. 1(c). When FN is increased,
microcontacts grow in size and number [17], which al-
lows more light to pass through the interface; thus, the
spatially integrated light intensity within the interface,
I(FN ), is a smooth, nonlinear, and monotonic function
of the normal load, as shown in Fig. 1(d), consistent
with previous observations [31]. The real area of contact
evolves in time; however, for sufficiently rapid normal
loading, in our case faster than 30N/s, the linear rela-
tionship FN = ARσ̄ holds, where σ̄ is the average con-
tact pressure. This relationship holds for a wide variety
of materials and contact models [13, 15–17, 31]. Thus, to
convert the light intensity to the real area of contact, a
conversion function I = g(FN ) = g(ARσ̄) is fit individu-
ally for each experiment. To avoid ambiguity, we only use
I(FN ) during the initial rapid loading. This calibration
is used throughout the experiment to convert intensity to
real area of contact: g−1(I(FN , t))/σ̄ = AR(FN , t). As
the magnitude of AR does not effect our results, we may
assume the fully plastic Bowden and Tabor picture [13],
σ̄ = σY , without loss of generality. Later we introduce a
model that also considers elasto-plastic deformation.

We test for memory using a two-step protocol, previ-
ously used for other mechanical systems [20], as shown
for a typical example in Fig. 2(a). The blocks are rapidly
loaded from above to FN = F1 and are held constant at
that load for a time TW . During this first step, the real
area of contact grows logarithmically in time:

∆AR(t) = β1 log(t) (1)

consistent with previous observations [17, 23]. At t =
TW , the normal load is rapidly reduced to FN = F2 and
kept constant for the remainder of the experiment. As a
result of the reduction in normal load, many microcon-
tacts instantly detach, showing a simultaneous drop in
AR, as shown at t = 1000s in Fig. 2(a). We refer to this
instantaneous drop as the elastic response, distinct from
the subsequent slow aging. For t > TW , the evolution of
AR is non-monotonic, as shown in Fig. 2(b). Initially,
the real area of contact shrinks in time. This de-aging ef-
fect [23], or weakening, may persist for seconds, minutes,
or even hours until AR reaches a minimum at time, TAmin.
After this time, AR increases monotonically, eventually
recovering typical logarithmic aging. This is a nontrivial

FIG. 1. Experimental setup (a) Schematic of the the biaxial
compression/translation stage (top) with integrated optical
measurement apparatus (bottom) (b) µS vs experiment num-
ber for a typical PMMA-PMMA interface before (top) and
after (bottom) trend removal described in text. (c) I(FN )
(blue circles) and g(FN ) (black line) vs FN for a typical load-
ing cycle. Inset: A typical snapshot of an interface illuminated
with TIR at FN = 100 N after background subtraction. Scale
bar is 1 mm.

response considering that a nonmonotonic evolution oc-
curs while all loading parameters including FN are held
constant. At any two time points in which AR has the
same value before and after TAmin, the load (F2), and all
other macroscopic conditions are identical; however, the
system’s evolution at these two points is opposite in sign.
Thus, the non-monotonic behavior clearly indicates that
the state of the system cannot be described by a sin-
gle variable, and additional degrees of freedom storing a
memory of the system’s history must exist.

The non-monotonic evolution of AR for t > TW follows
the sum of two logarithms

∆AR(t) = β∆ log(t− TW ) + (β2 − β∆) log(t) (2)

with β∆ < 0, and TAmin ≡ −β∆TW /β2 − TW , as shown
in Fig. 2(b). This functional form is consistent with
the Amir-Oreg-Imry (AOI) model [32, 33], recently pro-
posed as a universal model for aging in disordered sys-
tems [20]. In this framework, the relaxation dynamics of
glassy systems are facilitated by a spectrum of uncoupled,
exponentially relaxing modes, whose density is inversely
proportional to their relaxation time scale. These modes
may arise from a wide variety of physical processes [34]
and in our system may represent modes of plastic creep
or adhesive bonding, or any analogous thermally acti-
vated process with a distribution of energy barriers that
is broad with respect to kBT . All modes relax to an equi-
librium that is set by a control parameter, which for the
frictional case is FN . For a two-step protocol, the equi-
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FIG. 2. Glassy dynamics in the real area of contact (a) AR
and FN vs time for a typical two-step protocol with F1 = 100
N, TW = 1000 s, F2 = 25 N. (b) Evolution of AR as a function
of time shifted by TW following a step-down in force with F1

= 100 N and F2 = 25 N. Fits (black) use Eq. (2). (c) TAmin as
a function of TW . F2 = 25 N. (d) {β1, β∆, β2} as a function
of {F1, F∆, F2} respectively. Gray line is a linear fit to β1(F1)
and β2(F2). Note the deviation of de-aging rate (β∆, F < 0)
from the linear trend.

librium point may change before all modes have fully
relaxed; thus, in such a case, non-monotonic evolution
may result from fast and slow modes moving in opposite
directions. AOI predicts that the evolution of AR will de-
pend linearly on the parameters in the loading protocol,
namely that

TAmin
TW

= const
β1

F1
=

β∆

∆F
=
β2

F2
= const (3)

with ∆F ≡ F2 − F1. These predictions, including the
form of Eq. (2), also apply to a two-step protocol in
which F1 < F2, albeit with β∆ > 0. Experimentally, we
indeed find a linear dependence between TAmin and TW
over several orders of magnitude, as shown in Fig. 2(c).
Such a proportionality is a hallmark of real aging and
memory [20]. We also find that a step-up protocol (F1 <
F2) yields the same double logarithm evolution (Eq. 2)
as the step-down protocol (F2 < F1), and the logarithmic
slopes in both protocols are consistent with Eq. (3), with
the notable exception of de-aging, as shown in Fig. 2(d).
We return to this later to discuss a possible resolution to
this discrepancy, via a modification of AOI that accounts
for the instantaneous detachment of microcontacts that
results from a drop in FN .

The non-monotonic effects described above indicate
that interfacial memory influences the evolution of the

FIG. 3. Memory in static friction (a) µS vs time for F1 =
90 N, F2 = 25 N. Line is a guide for the eye to highlight
nonmonotonicity. (b) Evolution of AR and µS as a function
of time shifted by TW following a step-down in force with
F1 = 90 N, TW = 60 s, F2 = 40 N. (c) Local TAmin for the
experiment shown in (b). Notice that local TAmin corresponds
to Tµmin, ∼ 8s, only over a portion of the interface.

real area of contact. The correspondence between the
real area of contact and the static coefficient of friction
has been well established [13, 17, 23, 25, 29, 31, 35–37].
However, for aging, the vast majority of these tests re-
lied on a single-step protocol, which shows only continu-
ous logarithmic strengthening, captured well by the Rate
and State theory. The non-monotonic relaxation we ob-
serve in AR cannot be captured by any single degree of
freedom model, including Rate and State; thus, it is im-
portant to test if µS also exhibits memory.

Every measurement of µS necessitates slip which re-
sets the interface and the experiment. Therefore, while
the full evolution of AR can be continuously measured
in a single experiment, the nonmonotonic behavior of
the frictional response cannot be verified in a single run,
and measuring µS(t) requires numerous repetitions of
any single protocol. Comparing µS(t), as shown in Fig.
3(a), to AR(t) reveals that the two physical quantities
exhibit a qualitatively similar memory effect, including
non-monotonicity and the increase of Tµmin with TW .
This indicates that a frictional interface is glassy, and
can exhibit a real, Kovacs-like memory effect [20]. Fol-
lowing a two-step protocol, µS(t) and AR(t) both evolve
non-monotonically, yet they do not evolve synchronously;
strikingly, here TAmin 6= Tµmin. In fact, concurrent mea-
surements of the two quantities show that for an extended
period, µS(t) increases whereas AR(t) continues to de-
crease, as evidenced by the time period of 8 to 32 seconds
in Fig. 3(b). This result points to a simultaneous depar-
ture from the Bowden and Tabor framework, as well as
from Rate and State Friction.

The discrepancy between µS(t) and AR(t) emerges
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from the complex nature of the spatially extended, 2D
interface. Even for carefully prepared surfaces, loading is
never perfectly homogenous [25]. As a result, the inter-
face displays a plethora of local responses to a two-step
protocol, and TAmin can vary significantly across the in-
terface, as shown in Fig. 3(c). In only a few regions
does AR(t, x, y) shrink and grow in concert with µS(t);
less than 15% of the interface has a local TAmin value
closer to Tµmin than to global TAmin. This indicates that
AR(t) =

∫∫
AR(t, x, y)dxdy does not fully represent the

state of the interface.

We have shown that both AR(t) and µS(t) display
glassy memory and non-monotonic evolution in time.
This behavior cannot be reconciled with a single degree of
freedom model like Rate and State Friction, but instead
requires a larger spectrum of relaxation modes, such as
AOI. Furthermore, we observe AR(t) and µS(t) evolv-
ing asynchronously, and find a dramatic variation in the
evolution of AR(t, x, y) across the interface due to hetero-
geneity. This variation may explain the inconsistency. It
is well accepted that extended bodies with many contact
points do not begin sliding uniformly; rather sliding is
nucleated within a small region before rapidly propagat-
ing outward in a coherent fracture front [25, 29, 31, 36].
In our system, we expect nucleation to occur near the
trailing edge of the top sample, as previously reported
for identical loading geometries [28, 29, 38]. Therefore,
we expect the evolution of µS to be dominated by the
evolution of AR(x, y) in that region. Indeed, near the
trailing edge, the local values of TAmin and Tµmin match
quite well, as shown by comparing Fig. 2(b) and Fig.
3(c).

Taking into account another heterogeneity of the in-
terface may also suggest a resolution to the anomalously
weak de-aging rate in the global AR(t), following the
step-down protocol. As previously noted by Greenwood
and Williamson [15], when FN is reduced, the separation
between the two surfaces increases, and many microcon-
tacts instantly detach [14, 17]. Any memory stored in a
detached microcontact cannot influence the future evo-
lution of AR. This suggests a generalization of AOI in
which each individual mode, i, can engage and disengage
at a cutoff height, hi, uncorrelated with its time constant,
λi. As a result, instead of a single global equilibrium FN ,
each mode’s equilibrium is a function f(hi −H), where
H(FN ) is a global parameter. An appealing interpreta-
tion of this model considers an ensemble of springs with
spring function f(hi − H) = k(hi − H)α for hi ≥ H,
and 0 for hi < H, compressed from above by a rigid, flat
plane under force FN , as shown in Fig. 4(a). We follow
Greenwood and Williamson [15] and assume a normal or
an exponential distribution of surface heights, hi’s. De-
tachment is introduced by stipulating that modes with
hi < H are disregarded. Including detachment has no
effect on asymptotic aging (β1 and β2), or on positive
transient aging (β∆ for ∆F > 0), but it dramatically re-

FIG. 4. A phenomenological model for aging of a frictional in-
terface (a) Graphical representation of the ensemble of spring-
like modes which compose the interface in the model. A rigid
line at global height H(FN ) compresses all springs in contact.
Probability of a spring height P (h) is shown on the right. (b)
Simulated β∆ vs ∆F for F1 = 100 N and a Gaussian distribu-
tion of heights, P (h). (c) Measured β∆ vs simulated β∆ for
five values of α. A perfect correspondence would lie on the
black, x = y line. Darker and brighter shades correspond to
exponential and Gaussian distributions of P (h) respectively.
(d) Local TAmin vs TW for F1 = 100 N, F2 = 25 N. The seven
locations are indicated in the inset with corresponding colors.
Scale bar is 1 mm.

duces the rate of de-aging (β∆ for ∆F < 0). We find
results are insensitive to the probability distribution of
spring heights, P (h), provided they are sufficiently broad
[16]. We fit the spring constant, k, to match asymptotic
aging data, β1 and β2, leaving a single free parameter in
the model, α.

The modes can be interpreted as elements of real con-
tact area, in which case α = 0 generates the fully plastic,
Bowden and Tabor picture [13] where all area in contact
carries a set pressure (the yield stress) regardless of nor-
mal force. Thus, for α = 0 de-aging is completely elim-
inated, as shown in Fig. 4(b). Correspondingly, α = 1
describes an ensemble of Hookean springs whose intitial
deformation corresponds to fully elastic interfacial mod-
els [14, 15]. The experimental data matches quite well
with α = 1/2, falling exactly between the fully plastic,
α = 0 and the fully elastic α = 1 limits, as shown in Fig.
4(c). One implication of this model is that rich, non-
monotonic aging behavior and the memory effect are not
only global properties, but should persist in small sub-
sections of the interface. Indeed, logarithmic aging, de-
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aging, and the (quasi) linear scaling of TAmin with TW are
also present locally, as shown in Fig. 4(d). It is natural
to wonder onto what small scale the kovacs-like memory
effect will persist and whether it could be observed even
on a single asperity level.
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