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Future quantum devices often rely on favourable scaling with respect to the number of system
components. To achieve desirable scaling, it is therefore crucial to implement unitary transforma-
tions in a time that scales at most polynomial in the number of qubits. We develop an upper bound
for the minimum time required to implement a unitary transformation on a generic qubit network in
which each of the qubits is subject to local time dependent controls. Based on the developed upper
bound the set of gates is characterized that can be implemented polynomially in time. Further-
more, we show how qubit systems can be concatenated through controllable two body interactions,
making it possible to implement the gate set efficiently on the combined system. Finally a system
is identified for which the gate set can be implemented with fewer controls.

Achieving accurate control and scalability lie at the
heart of every functioning quantum information process-
ing device. Thus, a vital goal is to design algorithms
that can be implemented efficiently. In particular, in the
gate model of quantum information processing an effi-
cient algorithm should scale polynomially in the number
of gates used to carry out the computation. Through a
universal gate set every algorithm described by a uni-
tary transformation can be implemented up to some de-
gree of accuracy. However, a simple counting argument
shows that most of the unitary transformations cannot
be implemented efficiently [1]. Quantum control theory
allows for implementing the final unitary transformation
directly through optimized classical control fields [2–4].
This has the advantage that, if the procedure can be
done efficiently, there is no need for constructing gate
sequences. Instead, optimization algorithms such as a
gradient based search [5, 6], learning control [7, 8], or ge-
netic algorithms [9, 10], may be used to pre-calculate or
learn the classical control fields that implement the de-
sired unitary transformation. In fact, it has been shown
that the complexity of both approaches, i.e., calculating
control pulses and designing gate sequences is the same
[11, 12].

Similar to a universal gate set, for a fully control-
lable system every unitary transformation contained in
the special unitary group SU(2n) is reachable through
switchable controls. In order to implement a goal uni-
tary gate Ug efficiently, it is crucial that the length of the
control pulses, henceforth referred to as the minimum
gate time T , scales at most polynomially in the number
of qubits. Unfortunately, the determination of the mini-
mum gate time has remained a major technical challenge
to overcome for moving the field towards practical appli-
cations. In this letter we make a step towards solving this
problem by developing an upper bound for the minimum
gate time under the assumption that sufficient control
recources are available. As illustrated in figure 1, this
allows for determining the set of gates that provably can
be implemented efficiently.

Although substantial progress has recently been made
by characterizing graphs that can be controlled efficiently

[13], the characterization of the set of gates that can be
reached in polynomial time and the corresponding num-
ber of controls required is still unknown. Moreover, it re-
mains challenging to identify physical models that obey
the criteria developed in [13].

a) n-qubit network b) Reachable set

FIG. 1. Illustration of one of the main results: a) for a
generic qubit network (3) in which each qubit is subject to
two local controls (4) (grey arrows), b) the set of gates Rpoly

(white area) that (provably) can be implemented in a time
that scales at most polynomialy in the number of qubits is
characterized (see (2)). The dark grey area represents the set
of gates that can be reached with time optimal methods in
polynomial time.

The main quantitative result of this letter is the devel-
opment of the upper bound

T (a) ≤ l(a)

J

(
‖a‖∞ +

πl(a)(l(a)− 1)(n− 2)‖a‖2∞
2
√

2ε

)
,

(1)

for the minimum gate time to implement a goal unitary
transformation Ug(a) up to some error ε for a generic n-
qubit graph (3) in which each of the qubits is subject to
two local controls (4). As illustrated in figure 1 a), the
qubits (black circles) interact via two body interactions
(solid lines) where J is the smallest coupling constant
present in the graph. The generator of the goal unitary
transformation is characterized by l(a) real parameters
summarized in the vector a with ‖a‖∞ being the vector
infinity norm, i.e. the largest parameter.
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One way to obtain an upper bound on T is to find
a specific way to implement a generic unitary transfor-
mation and upper bound the corresponding time. The
procedure used here can be summarized by the following
steps, with details found below and in the online material
[14]:

1. Due to the assumption that each qubit is subject
to two unconstrained orthogonal controls, a decou-
pling sequence allows to select arbitrary two body
interactions instantaneously (see Eq. (5)).

2. A sequence formed by such two qubit unitaries (see
Eq. (6)) allows for creating unitary operations
which are generated by k-body interaction terms
in a time that scales linearly in k (see Eq. (7)).

3. Finally, unitary transformations that are gener-
ated by linear combinations of l, k-body interac-
tion terms can be created (up to an error ε) using
a Trotter sequence (see Eq. (8)).

As illustrated in figure 1 b), the bound (1) allows to con-
clude that the gate set

Rpoly = {U(a) ∈ SU(2n) | l(a), ‖a‖∞ ≤ O(poly(n))},
(2)

can be implemented on a qubit graph in which each qubit
is subject to two local controls in a time that scales at
most polynomially in the number of qubits n, and, more-
over, enables for characterizing the Hamiltonians that
can be simulated efficiently. We furthermore show that
for a specific system the gate set Rpoly can be imple-
mented with less controls. Moreover, a strategy is pre-
sented for efficiently scaling the system by controlling
two body interactions (schematically represented in fig-
ure 2). We remark that our findings are a proof of feasi-
bility rather than a strategy to implement gates in a time
optimal manner, which remains a practical challenge.

A quantum control problem can be expressed as fol-
lows. The system of interest is described by a time depen-
dent Hamiltonian of the form H(t) = H0 +Hc(t), where
H0 is referred to as the drift Hamiltonian and the controls
enter in Hc(t) via time dependent functions. The aim of
quantum control is then to steer the system towards a de-
sired target by shaping the control functions. Here we are
interested in implementing a generic target unitary trans-
formation Ug on a n qubit system. The first question to
consider is whether every Ug can be reached, i.e., whether
the system is fully controllable. When control enters in
a bilinear way in Hc(t) [15], known as the Lie rank cri-
terion [2], the system is fully controllable iff the controls
and drift generate the full algebra (see e.g., [16–22] and
references therein for examples). More formally, if the
system is fully controllable there exist controls which al-
low implementing every Ug = exp(Θ) with Θ ∈ su(2n) up
to arbitrarily high precision in finite time. Throughout
this work the special unitary algebra su(2n) is expressed

in terms of the Pauli operator basis {Bi}2
2n−1
i=1 , in which

each Bi corresponds to a string of Pauli operators. Every

Θ ∈ su(2n) can be written as Θ(a) =
∑l(a)
i=1 aiBi, where

the real coefficients are summarized in the vector a and
we denote by l(a) ≤ 22n − 1 the number of its non-zero
elements. Except for low dimensional systems [23–28],
the minimum gate time T (a) needed to implement Ug(a)
up to some accuracy is not known.

Consider a connected graph G(V,E) where the vertices
V and edges E represent qubits and two body interac-
tions, respectively. The most general form of such an
n-qubit graph is described by the drift Hamiltonian

H0 =
∑
i∈V,

α∈{x,y,z}

ω(i)
α σ(i)

α +
∑

(i,j)∈E,
α,β∈{x,y,z}

g
(i,j)
α,β σ

(i)
α σ

(j)
β , (3)

where ω
(i)
α , g

(i,j)
α,β are energy splittings and coupling con-

stants, respectively. Here the notation refers to σ
(j)
α ≡

11 ⊗ σα ⊗ 11 where σα with α ∈ {x, y, z} are Pauli spin

operators. That is, σ
(i)
α acts only non-trivially on the ith

qubit. We assume that each qubit is subject to two local

controls {σ(i)
x , σ

(i)
y } such that

Hc(t) =
∑
i∈V

(fi(t)σ
(i)
x + hi(t)σ

(i)
y ), (4)

where fi(t), hi(t) are the corresponding control fields
which are assumed to be unconstrained. This is a typi-
cal assumption in the context of quantum control theory
and dynamical decoupling and its crucial for the devel-
opment of the upper bound below (see the note [29]).
Before relaxing the assumption of two orthogonal con-
trols on each qubit, we first describe in more detail how
the upper bound on T (a) can be derived for this control
system. Further details of the derivation can be found in
[14].

The analysis starts with the form of Hc(t), allowing
for having two orthogonal controls on each qubit, such
that every single qubit gate can be implemented instan-
taneously [24, 25]; moreover, the system is fully control-
lable [21]. Using a decoupling sequence [30, 31] formed by
the controls, permits instantaneously selecting arbitrary
two body interaction terms [32]. Thus, we can implement
every unitary transformation

U
(i,j)
α,β (k) = e±ikσ

(i)
α σ

(j)
β , k ∈ R+, α, β ∈ {x, y, z},

(5)

in a time t = k/g
(i,j)
α,β [14], noting that each Pauli operator

can be rotated intanteously to a generic Pauli operator
using local operations. The following analysis makes use
of fact that every basis operator Bi can be created by a
nested commutator of the form [· · · , [S1, [S2, S3]]] where

Sk ∈ S = {iσ(i)
α σ

(j)
β }, which are referred to as a generat-

ing set and we refer to the length of the nested commu-
tator as the depth D with [S1, S2] being a commutator of
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D = 1. Using a sequence of the form

U (2,3)†
x,z (π/4)U (1,2)

z,y (k)U (2,3)
x,z (π/4) = exp(ikσ(1)

z σ(2)
z σ(3)

z ),

(6)

and introducing the smallest coupling constant J =

mini,j,α,β{g(i,j)α,β } present in H0, an upper bound for the
time ∆t to create a unitary operation generated by a
commutator of depth 1, in (6) a 3-body interaction term,
can be found, i.e., ∆t ≤ π

2J [14].
There are other sequences that allow for increasing or

decreasing the length of a Pauli string [33]. However,
due to the form of the construction (6), a unitary opera-
tion generated by a nested commutator of depth D will
then take at most time D∆t. Thus, the time τ(aiBi) to
implement a unitary operation Ug = exp(aiBi) is upper
bounded by

τ(aiBi) ≤
1

J

(
D(Bi)

π

2
+ |ai|

)
, (7)

which is compared with known results in the online ma-
terial [14]. Through a Trotter-Suzuki sequence [34] we
can further upper bound the time it takes to generate a
unitary operator generated by linear combinations of the
basis operators up to an error ε. We find

T (a) ≤ 1

J

(
‖a‖1 +

πK(a)
∑l(a)
i=1D(Bi)

4
√

2ε

)
, (8)

with ‖ · ‖1 being the vector-1 norm, K(a) =
1√
2n

∑
j>k |ajak|‖[Bj , Bk]‖, and ‖ · ‖ is the Hilbert-

Schmidt norm. The scaling in ε, explicitly given in [14],
can be traced back to the use of the Suzuki-Trotter series,
and the scaling can be improved using more sophisticated
sequences [35]. An algorithm finding the “shortest” path,
possibly weighted by the coupling constants, to create a
Bi would produce the tightest bound. However, it takes
a nested commutator of depth (n − 2) to create a basis

operator that contains n Pauli operators σ
(1)
α σ

(2)
β · · ·σ

(n)
δ .

From this operator it takes another (n− 2) commutators
to create any Bi. For an illustration we refer to the Lie
tree diagram in [14]. Thus, the depth is upper bounded
by D(Bi) ≤ 2(n − 2), yielding the bound (1). Provided
that ‖a‖∞ scales at most polynomially in the number
of qubits, we then have as a sufficient criterion for ef-
ficiently implementing a goal unitary Ug the following
result. For the control system (3) and (4), a unitary gate
Ug(a) that is parameterized through l(a) parameters can
be implemented in a time that is at most polynomial in
the number of qubits n if l(a) ≤ O(poly(n)). Thus, for
the control system in (3) and (4) the set of gates Rpoly

given by (2) can be reached in a time that scales at most
polynomially in the number of qubits. In particular for
‖a‖∞ = O(1) and l(a) = O(n) every Ug can be imple-
mented in a time at most of the order O(n4). However,
in general for l(a) = 22n − 1 the upper bound scales ex-
ponentially T (a) ≤ O(n26n). The bound (8) can be di-
rectly applied to efficiently simulating the dynamics with

Hamiltonians [36–38]. For the control system expressed
in Eq. (3) and Eq. (4) every Hamiltonian H = −iΘ(a)
consisting of l(a) ≤ O(poly(n)) k-body interaction terms
can be simulated efficiently. Since the strategy to ob-
tain (8) is not necessarily time optimal, the actual set
of gates that can be reached in polynomial time may
be larger. It would be interesting to see how much the
set can be increased using time optimal control methods
[39]. However, the set Rpoly can certainly be increased
by considering the full expression in (8). Moreover, one
can easily determine the maximum time needed to im-
plement Ug(a) = exp(Θ(a)) by expanding Θ in the Pauli
operator basis and calculating (8).

For l(a) = 1 the target unitary operation is given by
Ug = exp(aiBi) and it follows from (7) that the time
to implement such an operation is upper bounded by
τ(aiBi) ≤ 1

J (π(n − 2) + |ai|). For instance, every two
qubit gate corresponding to a basis operator with two
Pauli operators can be implemented in a time that scales
at most linearly in the number of qubits. Moreover, gates
corresponding to basis operators with n Pauli operators,

i.e., n body interaction terms of the form σ
(1)
α σ

(2)
β · · ·σ

(n)
δ ,

can be implemented in linear time as well. The bound
can be tightened by introducing the geodesic path dis-
tance d(i, j) between two qubits i and j as the small-
est number of edges in a path connecting the two con-
sidered qubits. For example, it follows that the time
to create a CNOT gate between qubit i and j is up-

per bounded TCNOT ≤ π
(
d(i,j)−1

J + 1
4J

)
. Since every

two qubit gate can be implemented with at most three
CNOT gates [40], up to local unitary rotations, we have

T2qubit ≤ 3π
(
d(i,j)−1

J + 1
4J

)
. This bound is tighter than

the bound that would be obtained by simply implement-
ing a CNOT gate on two nearest neighbor qubits fol-
lowed by SWAP operations [24, 25]. The upper bound
for T2qubit describes how much time is maximally needed
in order to implement a generic two qubit gate on a qubit
graph (3), provided each qubit can be instantaneously
controlled locally. Therefore, the bound for T2qubit char-
acterizes the time scale for entangling two qubits in a
generic qubit network.

The characterization of the set of gates that can be
reached in polynomial time (2) relied on the assumption
that each qubit is subject to two orthogonal controls. A
natural question is whether the number of controls can
be reduced while still being able to implement Rpoly in a
time that scales at most polynomially in the number of
qubits. Before presenting an n-qubit graph for which this
is the case with only n+ 1 controls, we address the ques-
tion regarding how qubit systems can be concatenated in
order to implement Rpoly on the total system.
Concatenating systems – Suppose we have two n-qubit

graphs G1(V1, E1) and G2(V2, E2) for which the time to
implement a generic two qubit unitary on each of the
graphs is upper bounded by Tc. Now, as represented in
figure 2, connect the two graphs with a single controllable

two body interaction, say σ
(i)
z σ

(j)
z with i ∈ V1 and j ∈ V2.
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Importantly, {iσ(i)
α σ

(i′)
β , iσ

(j)
γ σ

(j′)
δ , iσ

(i)
z σ

(j)
z } with i, i′ ∈

V1 and j, j′ ∈ V2 forms a generating set S.

  -qubit graph

FIG. 2. Illustration of how L qubit graphs, each consisting of
n qubits, can efficiently be concatenated through controllable
two body interactions (dotted lines). Assuming that on each
qubit graph any two qubit gate can be implemented in a time
smaller than Tc, for ‖a‖2∞ = O(1) and l(a) = O(n), we then
have for the total system T (a) ≤ O(Tc(Ln)5).

Thus, every basis operator Bi ∈ su(22n) for the total
system can be created through a nested commutator
formed by the elements of S. The time to create a
unitary Ug = exp(aiSi) with Si ∈ S is upper bounded
by Tc. Therefore it takes ∆t ≤ 2Tc to produce a
nested commutator of depth 1 and the depth for a
generic basis operator D(Bi) is upper bounded by
2(2n − 1). Consequently the time to implement a
unitary transformation Ug = exp(aiBi) on the total
system is upper bounded by τ(aiBi) ≤ Tc(4(2n−1) +1).
As in the previous paragraph, a Trotter sequence yields
a generic Ug(a) ∈ SU(22n) up to an error ε so that
for the combined system an upper bound on T (a) is
obtained, where the explicit form is given in [14]. For
‖a‖2∞ = O(1) and l(a) = O(n), we conclude that
T (a) ≤ O(Tc(2n)5). It immediately follows that upon
combining L qubit graphs, each consisting of n qubits,
through L − 1 controllable two body interactions, then
the time T (a) to implement Ug(a) ∈ SU(2Ln) scales at
most as O(Tc(Ln)5). Thus, as a sufficient criterion for a
qubit system being scalable we have the following result.

Using L − 1 controllable two body interactions every
Ug(a) ∈ SU(2Ln) can be implemented on a Ln-qubit
network in a time which scales at most polynomially in
L if ‖a‖∞, l(a) ≤ O(poly(Ln)) .

Concatenating blocks of qubits through controllable
two body interactions allows for scaling the total system
so that the gate set Rpoly can be implemented efficiently
on the combined system. This situation emphasizes the
importance of being able to control two body interac-
tions. However, an allied question is whether a qubit
graph exists for which a few local controls are sufficient
to implement Rpoly efficiently. To address this goal re-
quires identifying a system and a number of controls that
allow for implementing each two qubit unitary (5) in a
time that scales at most polynomially in the number of
qubits. Based on a decoupling scheme, for a n- qubit sys-

tem in the previous paragraph, this goal is always pos-
sible using 2n controls. Now we show that for a star
shaped graph the number of controls can be reduced to
n+ 1.
Reducing the number of controls – Consider a star

shaped graph described by the drift Hamiltonian H0 =

J
∑N+1
i=2 (σ

(1)
x σ

(i)
x +σ

(1)
y σ

(i)
y )+J

∑N+1
i=2 σ

(i)
y , where for the

sake of simplicity the couplings and the energy splittings
are assumed to be all given by J . Control is exerted

through {σ(1)
x , σ

(1)
y , σ

(i)
z }, i = 2, · · · , N + 1. For an il-

lustration of such a graph we refer to the online material

[14]. Through decoupling using a string of σ
(i)
z we can

instantaneously implement unitaries corresponding two

body interaction terms Hk = (σ
(1)
x σ

(k)
x +σ

(1)
y σ

(k)
y +σ

(k)
y ).

Further decoupling with σ
(1)
x , σ

(k)
z and instantaneous lo-

cal rotations of qubit 1 and qubit k yield unitaries cor-

responding to σ
(1)
α σ

(k)
x , σ

(1)
β σ

(k)
y and σ

(k)
y . Recall that

∆t = π
2J units of time are needed to create a unitary op-

eration generated by [σ
(1)
α σ

(k)
x , σ

(k)
y ]. Further note that a

unitary operation Ug = exp(aiSi) with Si ∈ {iσ(1)
α σ

(k)
β }

takes at most Tc = 1
J (π2 + |ai|) time, where {iσ(1)

α σ
(k)
β }

forms a generating set. In order to obtain a unitary
operation corresponding to a commutator [S1, S2] re-
quires ∆t ≤ 3π

J units time. Thus, the time τ(aiBi)

to create Ug = exp(aiBi) with Bi ∈ su(2N+1) is up-
per bounded by τ(aiBi) ≤ D(Bi)

3π
J + 1

J (π2 + |ai|).
By upper bounding the depth we then find τ(aiBi) ≤
1
J

(
π
2 (12(n− 2) + 1) + |ai|

)
, where n = N +1 is the total

number of qubits. Therefore, every Ug = exp(aiBi) can
be implemented in a time that scales at most linearly in
the number of qubits. Again using a Trotter sequence
finally permits concluding that for the star shaped graph
every U ∈ Rpoly can be implemented efficiently up to
some error ε using only n + 1 controls. The star shaped
graph model is of particular importance since it is used
to describe the interaction of an electron spin in a nitro-
gen vacancy center with the surrounding nuclear spins
[41–44], and, in general, quantum dots in a spin bath
[45–47].
Conclusions – We have characterized the set of gates

that (provably) can be implemented in polynomial time
on a generic qubit network where each qubit is controlled
locally using time dependent fields. The characterization
relied on the assumption that the control fields are uncon-
strained in strength. Further investigations regarding the
importance of this assumption, as well as an assessment
of the tightness of the derived bound can be found in the
online material [14]. The control of two body interactions
allows for concatenating blocks of qubits so that the to-
tal system can be controlled efficiently, thereby paving
the way towards scalable quantum devices. Moreover,
we have identified a model, for which the efficiently im-
plementable gate set can be realized with fewer local con-
trols. An interesting goal would be the determination of
the minimum number of controls required to implement
Rpoly and the corresponding graph topologies.
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[21] R. Zeier and T. S. Herbrüggen, J. Math. Phys. 52, 113501
(2011).

[22] Z. Zimborás, R. Zeier, T. H. Herbrüggen and D. Bur-
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