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We propose and analyze a novel realization of a solid-state quantum network, where separated
silicon-vacancy centers are coupled via the phonon modes of a quasi-1D diamond waveguide. In
our approach, quantum states encoded in long-lived electronic spin states can be converted into
propagating phonon wavepackets and be reabsorbed efficiently by a distant defect center. Our
analysis shows that under realistic conditions, this approach enables the implementation of high-
fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks. Apart
from quantum information processing, this setup constitutes a novel waveguide QED platform,
where strong-coupling effects between solid-state defects and individual propagating phonons can
be explored at the quantum level.

Electronic and nuclear spins associated with defects in
solids comprise a promising platform for the realization of
practical quantum technologies [1]. A prominent exam-
ple is the nitrogen-vacancy (NV) center in diamond [2, 3],
for which techniques for state detection [4], coherent ma-
nipulations [5–7] and local entanglement operations [8–
10] have been demonstrated and employed for various
nanoscale sensing applications [11]. Despite this progress
in the local control of spin qubits, integrating many spins
into larger networks remains challenging. To achieve this
goal, several schemes for interfacing spins via mechanical
degrees of freedom have recently been discussed [12–17]
and first experiments demonstrating magnetic [18–20] or
strain-induced [21–25] couplings of mechanical vibrations
to both long-lived spin states and electronic excited states
of NV centers have been carried out. However, the weak
intrinsic coupling of spins to vibrational modes and the
short coherence of optically excited states make the ex-
tension of these methods into the quantum regime chal-
lenging.

In this Letter we describe the implementation of
a phonon quantum network, where negatively-charged
silicon-vacancy (SiV) centers are coupled via propagating
phonon modes of a 1D diamond waveguide [26–29]. The
electronic ground state of the SiV center features both
spin and orbital degrees of freedom [30–32], which makes
it naturally suited for this task; quantum states can be
encoded in long-lived superpositions of the two lowest
spin-orbit-coupled states [33–37], while a controlled ad-
mixing of higher orbital states, which are susceptible to
strain, gives rise to a strong and tunable coupling to
phonons. The large spin-orbit splitting of ∼ 46 GHz
enables coherent operations already at convenient tem-
peratures of T . 1 K, when thermal excitations at this
frequency are frozen out. Our analysis shows that high-
fidelity quantum state transfer protocols between distant
SiV centers can be implemented under realistic condi-

Si

C
⌦e(t)

⌦r(t)

�

�

!B

⌦(t)
!0

|1i = |e� #i

|3i = |e+ #i

|2i = |e+ "i

|4i = |e� "i
SiV ground states

w

L

�(!0)xy

z

FIG. 1: Setup. An array of SiV defects embedded in a 1D
phonon waveguide. The inset shows the level structure of the
electronic ground state of the SiV center. A tunable Raman
process involving the excited state |3〉 is used to coherently
convert the population of the stable state |2〉 into a propagat-
ing phonon, which can be reabsorbed by any other selected
center along the waveguide. See text for more details.

tions. Moreover, we propose a scalable operation of such
phonon networks using switchable single-defect mirrors.

Model.—We consider a system as depicted in Fig. 1,
where an array of SiV centers is embedded in a 1D dia-
mond waveguide. The electronic ground state of the SiV
center is formed by an unpaired hole of spin S = 1/2,
which occupies one of the two degenerate orbital states
|ex〉 and |ey〉. In the presence of spin-orbit interactions
and a weak Jahn-Teller effect, the four states are split
into two doublets, {|1〉 ' |e−, ↓〉, |2〉 ' |e+, ↑〉} and
{|3〉 ' |e+, ↓〉, |4〉 ' |e−, ↑〉}, which are separated by
∆/2π ' 46 GHz [31, 32]. Here, |e±〉 = (|ex〉 ± i|ey〉)/

√
2

are eigenstates of the orbital angular momentum opera-
tor, i.e. Lz|e±〉 = ±~|e±〉, where the z-axis is along the
symmetry axis of the defect. In the presence of a mag-
netic field ~B = B0~ez, the Hamiltonian for a single SiV
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center is (~ = 1)

HSiV = ωB |2〉〈2|+ ∆|3〉〈3|+ (∆ + ωB)|4〉〈4|

+
1

2

[
Ω(t)ei[ωdt+θ(t)] (|2〉〈3|+ |1〉〈4|) + H.c.

]
,

(1)

where ωB = γsB0 and γs is the spin gyromagnetic ra-
tio. In Eq. (1), we have included a time-dependent driv-
ing field with a tunable Rabi-frequency Ω(t) and phase
θ(t), which couples the lower and upper states of op-
posite spin. This drive can be implemented locally on
individual defects either directly with a microwave field
of frequency ωd ∼ ∆ [38], or indirectly via an equivalent
optical Raman process [39]. The latter method is already
used in experiments to initialize and prepare individual
SiV centers in superpositions of |1〉 and |2〉 [33–35] with
coherence times that can exceed 10 ms in the absence of
thermal processes and with dynamical decoupling [36].

For the waveguide, we consider a quasi-1D geometry
of width w and length L � w. The waveguide sup-
ports phonon modes of frequency ωn,k and mode function
~un,k(~r) ∼ ~u⊥n,k(y, z)eikx, where k is the wavevector along

the waveguide, n is the branch index and ~u⊥n,k(y, z) is the
transverse profile of the displacement field. The phonons
induce transitions between the orbital states |e±〉 [44–46],
and the Hamiltonian for the whole system reads

H =
∑
j

H
(j)
SiV +

∑
n,k

ωn,ka
†
n,kan,k

+
1√
L

∑
j,k,n

(
gjn,kJ

j
+an,ke

ikxj + H.c.
)
.

(2)

Here j labels the SiV centers located at positions ~rj =
(xj , yj , zj), J− = (J+)† = |1〉〈3| + |2〉〈4| is the spin-
conserving lowering operator and an,k is the annihila-
tion operator for the phonon modes. The couplings
gjn,k ≡ gn,k(yj , zj) depend on the local strain tensor,

εabn,k(~rj) = 1
2 [ ∂
∂xb

uan,k(~rj) + ∂
∂xa

ubn,k(~rj)], and can be eval-

uated for a known mode profile ~u⊥n (y, z) [39, 46]. We
express the resulting couplings as

gjn,k = d

√
~k2

2ρAωn,k
ξn,k(yj , zj), (3)

where d/2π ∼ 1 PHz is the strain sensitivity [44, 45], ρ
the density and A the transverse area of the waveguide.
The dimensionless coupling profile ξn,k(y, z) accounts for
the specific strain distribution and ξ(y, z) = 1 for a ho-
mogeneous compression mode.

From cavity to waveguide QED.—For small structures,
L ∼ 10 − 100µm, w . 200 nm, and group velocities
v ∼ 104 m/s, the phonon modes are well separated in
frequency, ∆ω/2π & 50 MHz, and the SiV centers can be
coupled to a single standing-wave mode with a strength
gL = g0

√
λ/L ≈ 2π × (4− 14) MHz, where g0/2π ≈ 100
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FIG. 2: Phonon waveguide. (a) Acoustic dispersion relation
for a triangular waveguide of width w = 130 nm and etch-
angle ϕ = 35o. Symmetric (solid lines) and anti-symmetric
(dashed lines) branches with respect to the vertical mirror-
symmetry plane are shown. (b) Normalized displacement pro-
files of the symmetric phonons at 46 GHz. (c) Correspond-
ing emission rates into the symmetric longitudinal (Γl) and
transverse (Γt) polarization for different positions of the de-
fect within the triangular cross-section. (d) Γl and fraction
(βl) of spontaneous emission into the longitudinal branch for
different positions of the SiV center along the vertical mirror-
symmetry axis. In our calculations, the waveguide is oriented
along the [110] crystal axis and the SiV centers are oriented
along the [1̄11], orthogonal to the waveguide axis. Experi-
mentally, SiVs of this specific orientation can be pre-selected
based on their Zeeman splitting ωB , when a static B-field is
aligned along [1̄11].

MHz and λ ≈ 200 nm is the phonon wavelength. The sys-
tem dynamics is then governed by a Jaynes-Cummings
interaction between phonons and orbital states [39]. In
the strong coupling regime, gL > κ = ∆/Q, which
is reached for moderate mechanical quality factors of
Q > 104, a coherent exchange of phonons and defect exci-
tations becomes possible. For longer waveguides, the cou-
pling to the quasi-continuum of phonon modes is charac-
terized by the decay rate Γj(∆) =

∑
n Γj,n(∆) for states

|3〉 and |4〉, where

Γj,n(ω) = lim
L→∞

2π

L

∑
k

|gjn,k|2δ(ω − ωn,k). (4)

For a single compression mode with ~u⊥(y, z) ∼ ~x and a
linear dispersion ωk = vk, Γ(ω) = d2~ω/(ρAv3), which
results in a characteristic emission rate of Γ(∆)/2π ∼ 1
MHz [46].

Figure 2 summarizes the simulated acoustic dispersion
relations and the resulting decay rates for a triangular
waveguide [26, 44] of width w = 130 nm. The SiV cen-
ters couple primarily to a longitudinal (l) compression
and a transverse (t) flexural mode with group velocities
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vl = 1.71 × 104 m/s and vt = 0.73 × 104 m/s, respec-
tively. The coupling to the other two branches of odd
symmetry can be neglected for defects near the center
of the waveguide. Fig. 2(c) and (d) show that the rates
Γl,t are quite insensitive to the exact location of the SiV
center. Moreover, the fraction of phonons emitted into a
specific branch, βn = Γn/Γ, is significantly below unity
as emission is split between two modes. In optical waveg-
uides [47], a value of β < 1 usually arises from the emis-
sion of photons into non-guided modes, which are irre-
versibly lost. For a phonon waveguide this is not the
case and the multi-branch nature of the waveguide must
be taken into account. For simplicity all examples be-
low assume βl = βt = 0.5, corresponding to SiV defects
located near the center of the beam.

Coherent spin-phonon interface.—We are interested in
the transfer of a qubit state, encoded into the stable
states |1〉 and |2〉, between a pair of emitting (e) and
receiving (r) defects in the waveguide,

(α|1〉e + β|2〉e)|1〉r → |1〉e(α|1〉r + β|2〉r). (5)

As shown in Fig. 1, this can be achieved by inducing a
Raman transition via state |3〉e to convert the population
of state |2〉e into a propagating phonon and by reverting
the process at the receiving center. For temperatures
T � ~∆/kB ≈ 2.2 K, such that all phonon modes are
initially in the vacuum state, this scenario is described by
the wavefunction |ψ(t)〉 = [α1+βC†(t)]|1̄, 0〉, where |1̄, 0〉
is the ground state with all SiV centers in state |1〉 and
C†(t) =

∑
j=e,r

[
cj(t)e

−iωBt|2〉j〈1|+ bj(t)e
−iω0t|3〉j〈1|+∑

n,k cn,k(t)e−iω0ta†n,k
]

creates a single excitation dis-
tributed between the SiV centers and the phonon modes.
The central phonon frequency ω0 = ∆j + δj is assumed
to be fixed by compensating inhomogeneities in the ∆j

by the detunings δj = ωjd − (∆j − ωjB).
By adiabatically eliminating the fast decaying ampli-

tudes bj , we derive equations of motion for the slowly
varying amplitudes ci(t) [39], leading to

ċj(t) = −γj(t)
2

cj(t)−
∑
n

√
γj,n(t)

2
e−iθj(t)Φin

j,n(t), (6)

where γj(t) =
∑
n γj,n(t) is the effective decay rate of

state |2〉j and

γj,n(t) =
Ω2
j (t)

4δ2
j + Γ2

j (ω0)
Γj,n(ω0). (7)

Assuming 0 ≤ Ω(t)/2π < 70 MHz and δ/2π = 100 MHz,
this rate can be tuned between γj = 0 and a maximal
value of γmax/2π ≈ 250 kHz, which is still fast compared
to the expected bare dephasing times T ∗2 = 10 − 100µs
of the qubit state [36]. The large detuning δ � Γ(∆)
ensures that any residual scattering of phonons from an
undriven defect is strongly suppressed, since the local

drive field Ω(t) is essential to establish a resonant Raman
process. (see Fig. 1 and [39]).

The last term in Eq. (6), where Φin
j,n = Φin,L

j,n + Φin,R
j,n ,

describes the coupling of an SiV center to the right- (R)

and left- (L) incoming fields Φ
in,R/L
j,n , which themselves

are related to the corresponding outgoing fields by [48]

Φ
out,R/L
j,n (t) = Φ

in,R/L
j,n (t) +

√
γj,n(t)

2
cj(t)e

iθj(t). (8)

Together with Eq. (6), these input-output relations spec-
ify the local dynamics at each node and must be sup-
plemented by propagation relations for all fields [cf.
Fig. 3(a)]. As an example, for xr > xe, the right
propagating fields obey Φin,R

r,n (t) = Φout,R
e,n (t − τner)eiφ

n
er ,

where τner = (xr − xe)/vn and φner = kn(xr − xe) are
the respective propagation times and phases. Reflec-
tions at the boundaries lead to a retarded interaction
of each center with its own emitted field. For example,
Φin,R
e,n (t) = −√RnΦout,L

e,n (t− τne )eiφ
n
e , where τne = 2xe/vn

and φne = 2knxe, and the reflectivity Rn ≤ 1 has been
introduced to model losses. The combined set of time-
nonlocal equations for the SiV amplitudes can be solved
numerically for given positions xj and pulses γj,n(t) [39].
Since any deterministic phase acquired during the proto-
col can be undone by a local qubit rotation, we identify
F(t) = |cr(t)|2 with the fidelity of the transfer, which
exceeds the classical bound for F > 2/3 [49].
Quantum state transfer.—In Fig. 3(b) we first con-

sider constant rates γj(t) = γmax, in which case a state
transfer is achieved over multiple round-trips of the emit-
ted wave-packet. For L ∼ 100µm, the round-trip times
2L/vn are still short compared to γ−1

max and we recover
the standing-wave picture with splittings ∆ωn = πvn/L
between consecutive k-modes. When only the transverse
mode is resonant, [i.e., φtL = φte + φtr + 2φter = 2πn,
while φlL = (2m + 1)π] and for maximal coupling [φle =
φlr = (2m + 1)π], we observe damped oscillations with
a fast frequency g̃ =

√
γmax∆ωt/2π ≈ 2π × 1.2 MHz

and decay rate κ = −∆ω
π logR ≈ 2π × 0.93 MHz. This

result is expected from a single-mode description of the
waveguide [39], and is recovered here as a limiting case
of our general framework. The losses from multiple im-
perfect reflections at the boundaries can be partially sup-
pressed at the expense of a slower transfer by detuning
the SiV centers from the closest mode by δ0 > g̃. In
this case the SiV centers communicate via an exchange
of virtual phonons and κ → κ(g̃/δ0)2. For a maximal
detuning δ0 = ∆ωt/2, the transfer fidelity scales approx-
imately as F ' R − π2/(8T ∗2 γmax) [39]. For T ∗2 ≈ 100µs
and R > 0.99, which can be achieved, for example, by
phononic Bragg mirrors [50], gate fidelities of F & 0.99
are possible.

As illustrated by the solid line in Fig. 3(b), the cav-
ity picture fails for longer waveguides, where multi-
mode and propagation effects become non-negligible. In
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FIG. 3: State transfer protocol. (a) Schematics showing the
relevant fields, retardation times and propagation phases. (b)
State transfer fidelity for constant rates γe(t) = γr(t) = γmax.
The case of a single resonant mode (red dashed line; φt

L = 0,
φl
L = π) is compared to the off-resonant case (dot-dashed

black line; φt
L = φl

L = π) for L ∼ 100µm (∆ωt/γmax = 140).
The full green line represents the long-waveguide counterpart
of the off-resonant scenario, where L ∼ 1 mm (∆ω/γmax =
14). (c)-(d) Protocol using slowly-varying control pulses

(tpγmax = 1) where Φout,L
r,t (t) is completely suppressed. The

dashed blue line corresponds to the long waveguide counter
part of the dashed red line. For (b)-(d), the two defects
are equally coupled to both modes, φn

e = φn
r = π and

βn
e = βn

r = 0.5. (e) Fidelity for varying positions of the receiv-
ing SiV center assuming φt

L = φl
L = π and a maximal transfer

time of 12γ−1
max. In all plots, we considered defects near the

boundaries (τe = τr ≈ 0) with a reflectivity of R = 0.92,
which corresponds to Q ≈ 5× 104 in the cavity limit.

Fig. 3(c) we illustrate a more general protocol, where the
phonons ideally travel the waveguide only once. Here,
the emission is gradually turned on with a fixed pulse
γe(t)/γmax = min{1, e(t−5tp)/tp}, while γr(t) and θr(t)
are constructed numerically by minimizing at every time
step the back-reflected transverse field |Φout,L

r,t |. For slow
pulses, γmaxtp � 1, a perfect destructive interference
between the field reflected from the boundary and the
field emitted by the receiving center can be achieved, i.e.,
Φin,L
r,t (t) +

√
γr,t(t)/2cr(t)e

iθr(t) = 0. For a single branch
(βt = 1) this results in a complete suppression of the sig-
nal traveling back to the emitting center so that for R = 1
and negligible retardation effects, a perfect state transfer
can be implemented [13, 51–53]. Fig. 3(c) shows that this
approach also leads to high fidelities under more general
conditions, where all propagation effects are taken into
account and multiple independent channels participate
in the transfer. Since there are no resonances building
up, this strategy is independent of L and can be applied
for short and long waveguides equally well.

In the examples shown in Fig. 3(b)-(d), the SiV
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(b) State-transfer protocol in an infinite waveguide where the
outermost SiV centers act as switchable mirrors. (c) The full
black line shows the fidelity as a function of the characteris-
tic time of the emitting pulse, tp, while the dashed red curve
shows the total protocol time, ttot. For the considered posi-
tions the propagation phases between each center and their
neighboring mirror defect is π for both phonon branches and
∆φer = 2π × n. In all simulations, a constant decay rate for
the mirror defects, γm1(t) = γm2(t) = γmax, maximizes the
fidelity.

centers are placed at positions near the ends of the
waveguide, where the effective emission rate γ̃j,n(t) =
2γj,n(t) sin2(φnj /2) [54] into both modes is maximal.
Fig. 3(e) shows the achievable fidelities when the position
of the receiving center is varied. We observe plateaus
of high fidelity extending over ∼ 100 nm, interrupted
by a few sharp dips arising from a complete destruc-
tive interference, i.e. φr ≈ π. This position insensitiv-
ity in a multi-channel scenario can be understood from a
more detailed inspection of the outgoing fields Φout,L

r,l [39]
and makes the protocol consistent with uncertainties of
δx < 50 nm achieved with state-of-the-art implantation
techniques [55].
Scalability.—In Fig. 4 (a), we consider a waveguide

of length L = 500µm containing 49 SiV centers. The
defects are spaced by ∆x = 10µm to allow individual
addressing by focused laser beams or microwave near-
fields [38, 39]. The resulting quantum connectivity ma-
trix, i.e. the achievable state transfer fidelity between
each pair, shows that most centers can be connected ef-
ficiently, making the operation of large scale networks
possible. By using phononic bandstructure engineer-
ing [50, 56], single mode [57] or chiral phononic waveg-
uides [58], the fidelities can be further increased beyond
the basic scenario considered here. In practice, propa-
gation losses and elastic phonon scattering will set ad-
ditional limitations for larger networks. In Fig. 4 (b),
we show a general strategy to overcome these limitations
by separating the whole waveguide into smaller segments
using additional ‘mirror centers’. The two outermost SiV
centers reflect the phonon wavepacket [59] and create an
effective cavity within the waveguide [60, 61]. In Fig. 4
(c), we plot the resulting fidelity for two SiV centers lo-
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calized inside this effective cavity. For transfer pulses
that are long compared to γ−1

max, the outmost centers act
as almost perfect mirrors, such that even in an infinite
waveguide state transfer protocols within reconfigurable
sections can be implemented.

Conclusion.—We have shown how an efficient coupling
between SiV centers and propagating phonons in a di-
amond waveguide can be realized and used for quan-
tum networking applications. By employing direct spin-
phonon couplings in the presence of a transverse mag-
netic field [62] or defect in other materials [63–65], the
described techniques could also be adapted for lower
phonon frequencies ∼ 5 − 10 GHz, where many ad-
vanced phononic engineering methods are already avail-
able. When combined with local quantum registers of
adjacent nuclear spins [66] as quantum memories [67, 68]
and for quantum error correction [10], the described pro-
tocol for communicating between many of such local
nodes provides a realistic approach for a scalable quan-
tum information processing platform with spins in solids.
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