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We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in
the Milky Way’s dark matter halo. By probing characteristic wakes that a passing dark matter
subhalo leaves in the phase space distribution of ambient halo stars, we estimate sensitivities down
to subhalo masses ∼ 107M� or below. The detection of such subhalos would have implications for
dark-matter and cosmological models that predict modifications to the halo-mass function at low
halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space
distributions, and we demonstrate through idealized simulations the ability to detect subhalos using
the phase-space model and a likelihood framework. Our method complements existing methods for
low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the
positions and velocities of the subhalos today.

Introduction.—The Standard Cosmological Model
(ΛCDM), based on cold dark matter (CDM) and a cos-
mological constant (Λ), predicts that the otherwise ho-
mogeneous primordial plasma features small density per-
turbations with a nearly scale invariant spectrum. After
dark matter (DM) begins to dominate the energy density
of the Universe, these perturbations begin to collapse,
forming a hierarchical spectrum of DM structures today.
This spectrum is predicted to extend to subhalo masses
well below those of dwarf Galaxies, Msh ∼ 109M�, which
are the least-massive DM subhalos observed so far. Dis-
covering DM subhalos with even lower mass is compli-
cated by the fact that such objects are not expected to
host many stars. Finding such subhalos is of the utmost
importance for a number of reasons: (i) their existence
is a so-far untested prediction of ΛCDM [1], (ii) certain
particle and cosmological models for DM, including warm
DM [2–4], fuzzy DM [5–7], and self-interacting DM [8–
10], predict drastic deviations from the ΛCDM prediction
for the halo-mass function, which describes the number
of halos as a function of mass, at scales below the dwarf
scale, and (iii) low-mass and nearby subhalos could pro-
vide invaluable targets for indirect searches for DM an-
nihilation and decay.

In this work, we propose a novel method for finding
low-mass DM subhalos. DM subhalos perturb the phase-
space distribution of stars as they propagate through the
local Galaxy. These perturbations, which we dub “stel-
lar wakes”, are a key signature of low-mass subhalos that
may be observable with upcoming data from e.g. the
Gaia mission [11], the Large Synoptic Survey Telescope
(LSST) [12], and the Dark Energy Survey (DES) [13],
combined with existing surveys from, for example, the
Sloan Digital Sky Survey (SDSS) [14]. In the left panel
of Fig. 1, we show an example of the perturbed stellar
phase-space distribution caused by a ∼ 2× 107M� sub-

halo. Stars are pulled towards the subhalo as it passes,
leaving behind distinct features in their velocity distri-
bution and, to a lesser extent, in their number density
distribution.

The method proposed here complements the two main
techniques in the literature for searching for low-mass
subhalos (see also [15]): the stellar stream method and
strong gravitational lensing. As subhalos pass by cold
stellar streams, they perturb the phase-space distribu-
tion of stars in the streams, and these perturbations may
expand into relatively large gaps. The stellar stream
method may be able to probe the halo-mass function at
subhalo masses down to Msh ∼ 105M� [16–22]. In fact,
two gaps recently identified in the Pal 5 stellar stream [22]
may originate from ∼ 106–108M� subhalos. However, it
is hard to conclusively interpret gaps in stellar streams
as arising from DM subhalos, since the DM subhalos are
no longer expected to be present near the stream. For
example, the two gaps in [22] could also have arisen from
perturbations due to the Mily Way’s bar or passing gi-
ant molecular clouds [23–25]. Another method to detect
subhalos is using strong lensing of distant galaxies [26]
(see also [27] and references therein). Recent strong
lensing observations using the Atacama Large Millime-
ter/submillimeter Array [28] have already claimed detec-
tion of DM subhalos at masses ∼ 108–109M�. Some of
the strongest constraints on warm and fuzzy DM models
come from observations of the Lyman-α forest [4, 29], as
at high redshifts the small-scale perturbations are still in
the quasi-linear regime.

The advantage of the stellar wakes method proposed
here is that it could detect nearby DM subhalos, poten-
tially at masses down to ∼ 107 M� using halo stars.
Moreover, it pinpoints the current subhalo positions, en-
abling detailed followup studies and even searches for DM
annihilation and decay. As such, our method comple-
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Figure 1. (Left) Moments of the stellar phase-space distribution (at z = 0 kpc), perturbed by a passing DM subhalo at the
origin. The subhalo is described by a Plummer sphere with Msh = 2×107M�, rs ≈ 0.72 kpc, and is traveling in the x̂ direction
with vsh = 200 km/s. The background phase-space distribution is described by a Maxwell–Boltzmann distribution (see (5))
with v0 = 100 km/s. (Middle) Same as left, but selecting only stars that are co-moving with the subhalo with vx > 150 km/s.
(Right) The stellar-wakes likelihood profile, defined in (8), as a function of the assumed subhalo mass. We show results for
a simulation with the same background and subhalo parameters as in the left panel (black solid) and for a background-only
simulation without a subhalo (blue dashed). The corresponding uncertainties, described in the text, are shown in gray/light
blue, respectively, for a distance of 5 kpc from the center of the ROI to Earth. The unperturbed stellar number density is
n0 = 5× 103 kpc−3, and we use an ROI with radius R = 3 kpc (dashed green in the left panel). For the simulation including a
subhalo, the likelihood profile peaks at the correct subhalo mass, marked by a vertical dotted blue line. For the background-only
simulation, we find good agreement with analytic results based on the Asimov data set (red), see (15).

ments the one proposed in [15], where the long-term ef-
fect on the disk stars’ velocity perpendicular to the disk
has been considered.

In the following, we will calculate the modification to
the stellar phase-space distribution from passing subhalos
analytically and then develop a likelihood framework to
search for DM subhalos. We will validate this framework
on simulated stellar populations, including projected ob-
servational uncertainties, and we will discuss potential
applications.

Perturbed stellar phase-space.—We assume that
a local stellar population is in kinetic equilibrium such
that, within the region of interest (ROI) where we will
perform the analysis, its phase-space distribution may be
described by a homogeneous, time-independent distribu-
tion f0(v), with v the stellar velocities. The number den-
sity is given by n0 =

∫
d3v f0(v). The gravitational po-

tential of a passing subhalo induces an out-of-equilibrium
perturbation to the phase-space distribution, which we
write as

f(x,v, t) = f0(v) + f1(x,v, t) . (1)

In general, the phase-space distribution is a solution to
the collisionless Boltzmann equation

∂f

∂t
+ v · ∇xf −∇xΦ · ∇vf = 0 , (2)

where Φ is the gravitational potential generated by the
subhalo. By substituting (1) into (2), we may derive the
equations of motion for f1. We choose to do so perturba-
tively, expanding to leading order in Newton’s constant
G. In this approximation, the term ∇xΦ · ∇vf1, which
would be of order G2, can be dropped [30]:

∂f1

∂t
+ v · ∇xf1 = ∇xΦ · ∇vf0 . (3)

We will work, for now, in the subhalo rest frame, where
Φ is time-independent and thus the velocity distribution
f1 is static. In [30] it was shown, by first going to Fourier
space for the variable x, that the solution to (3) is given
by

f1(x,v) =

∫ ∞
0

du

u2
∇yΦ(y) · ∇vf0(v)

∣∣∣∣
y=x−v/u

. (4)
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Throughout this work, we take f0(v) to be a boosted
Maxwell-Boltzmann distribution of the form

f0(v) =
n0

π3/2v3
0

e−(v+vsh)2/v2
0 , (5)

in the subhalo rest frame. Here, v0 is the velocity dis-
persion and vsh is the boost of the subhalo with respect
to the frame where the velocity distribution is isotropic
(for example, the Galactic frame). The generalization
to velocity distributions with anisotropic velocity disper-
sions is straightforward, but the isotropic case suffices for
illustration. We model the density profiles of DM subha-
los within the inner regions of the Milky Way (MW) by
“Plummer spheres” [31] with

ρ(r) =
3Msh

4πr3
s

(
1 +

r2

r2
s

)−5/2

, Φ(r) = − GMsh√
r2 + r2

s

. (6)

The Plummer profile features a constant density core of
characteristic radius rs. At large radii, it drops off faster
than the standard Navarro–Frenk–White (NFW) pro-
file [32], reflecting the tidal stripping which is expected
to occur in the outer layers of field halos within the MW.
The Plummer model also has the advantage of being eas-
ier to work with analytically than the NFW profile. We
use the results of [21], which analyzed subhalos within the
Via Lactea II simulation [33], to estimate the mass depen-
dence of rs: rs ≈ 1.62 kpc× (Msh/108M�)1/2. From (4),
we then obtain

f1(x,v) =
2GMshn0

π3/2v5
0

e−(v+vsh)2/v2
0 (v + vsh)

×

√
1 +

r2s
x2 v̂ − x̂

v x
√

1 +
r2s
x2

(√
1 +

r2s
x2 − x̂ · v̂

) , (7)

for a subhalo located at the origin.
In the left column of Fig. 1 we illustrate three differ-

ent analytically determined moments of the stellar phase-
space distribution, perturbed according to (7) by a sub-
halo with the characteristics given in the caption. In
particular, we show the average velocities 〈vx〉 and 〈vy〉
in the x̂ and ŷ directions, respectively, as well as the
fractional change in the number density δn�/n�. All
three panels show slices of phase-space in the x–y plane
at z = 0 kpc. To illustrate that perturbations are largest
for comoving stars, we show in the center column similar
distributions using only stars that satisfy vx > 150 km/s.
This cut selects stars that are moving with the subhalo
and are therefore perturbed the most by its presence.
Since the selection vx > 150 km/s implies non-zero 〈vx〉,
we show 〈δvx〉 ≡ 〈vx − 175 km/s〉 instead of 〈vx〉.
Stellar wakes likelihood function.—Given kine-

matic data on a large population of stars, we can use (7)
to search for evidence of a DM subhalo. We stress that
we are not looking for stars bound to the DM subhalo

but rather for a perturbation to the ambient distribution
of stars consistent with the expectation from a passing
gravitational potential.

We will focus here on a formalism that utilizes the
full 6-D kinematic data for the stellar population. This
requires a complete sample of stars in order to not in-
troduce bias in the spatial dependence of the number
density. In the Supplementary Material we show that
similar results are obtained using a likelihood function
based only on the velocity distribution; this may be the
preferred method if a complete sample of stars is not
available, as long as an unbiased determination of the
velocity distribution is possible.

The un-binned likelihood function is given by

p(d|M,θ) = e−Nstar(θ)
N̄star∏
k=1

f(xk,vk)(θ) , (8)

where

Nstar(θ) ≡
∫

ROI

d3x d3vf(x,v)(θ) (9)

is the total predicted number of stars in the ROI, as a
function of the model parameters θ in the model M.
The product is over all N̄star stars within the ROI; their
kinematic parameters {xk,vk} form the data set d. For
a spherical ROI of radius R and for the Plummer model,
Nstar(θ) is given by

Nstar(θ) =
4

3
πR3n0

[
1 + 3GMsh F

(vsh

v0

)
× R

√
R2 + r2

s − r2
s sinh−1(R/rs)

R3 v0vsh

]
,

(10)

where F (x) is the Dawson integral. The model param-
eters θ include the parameters n0 and v0 of the back-
ground distribution f0, in addition to the DM subhalo
parameters Msh, rs, its position xsh, and its boost vsh.

With large numbers of stars, it may be easier to use
the binned likelihood

p(d|M,θ) =

Nbins∏
i=1

e−ni(θ) [ni(θ)]Ni

Ni!
. (11)

Here, the observed number of stars in each of
the Nbins 6-D phase space bins is denoted by
Ni. The corresponding model prediction is given by
ni(θ) ≡ d3x d3v f(xi,vi)(θ), where d3x d3v is the phase
space volume covered by each bin, and xi, vi are its 6-D
coordinates.

To set a constraint on Msh, fixing or marginalizing over
the other subhalo parameters and background parame-
ters, we construct the likelihood profile

λ(Msh) = 2
[

max
θnuis

log p(d|M,θ)

−max
θ

log p(d|M,θ)
]
.

(12)
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Here, we have written θ = {Msh,θnuis}, where θnuis de-
notes the rest of the subhalo and background nuisance
parameters. The 95% upper bound on Msh is deter-
mined by λ(M95

sh ) ≈ −2.71, with M95
sh greater than the

mass that maximizes the likelihood [34]. We may use the
same framework to estimate the significance of a detec-
tion in the event that a subhalo is present in the data. In
this case, it is useful to define a test statistic (TS) given
by twice the maximum log-likelihood difference between
the models with and without the DM subhalo:

TS = 2
[

max
θ

log p(d|M,θ)

−max
θnuis

log p(d|M,θ)
∣∣
Msh=0

]
.

(13)

To estimate the sensitivity of the stellar wakes likeli-
hood to the presence of DM subhalos, we use the Asi-
mov data set [34], which corresponds to the median stel-
lar phase space distribution that would be obtained over
many realizations of mock data. For the binned likeli-
hood from Eq. (11), it is given by Ni = d3x d3v f0(vi).
The Asimov framework allows us to analytically estimate
the median likelihood profile that would be obtained over
multiple Monte Carlo simulations. Expanding to leading
order in Newton’s constant we find

λ(Msh) ≈ −
∫
d3x d3v

f2
1 (x,v)

f0(v)
. (Asimov) (14)

For the Plummer sphere model, and a spherical ROI of
radius R, we may calculate

λ(Msh) ≈ −64π n�G
2M2

shR

v2
0v

2
sh

I(εv, εr) , (Asimov) (15)

where εv = v0/vsh and εr = rs/R. An integral expres-
sion for I(εv, εr) is given in the Supplementary Material.
I(εv, εr) is close to unity at εv, εr � 1 and falls quickly
for εv & 1 and εr & 0.5. For the Asimov dataset, the test
statistic is given by TS = −λ(Msh), so that (14) and (15)
may be used to estimate the sensitivity to detection as
well as exclusion (5σ detection corresponds to TS ≈ 25).

Simulation results.—It is useful to verify the above
formalism on simulated data. We generate a homoge-
neous population of halo stars from a phase space distri-
bution with v0 = 100 km/s and n0 = 5× 103/kpc3, con-
sistent with the number density of blue stars measured
by SDSS [14] far away from the disk at ∼ 8 kpc from the
Galactic Center. We then simulate the stellar trajectories
in the presence of a DM subhalo described by a Plummer
sphere with Msh = 2×107M�, rs ≈ 0.72 kpc, and travel-
ing in the x̂ direction with vsh = 200 km/s. The subhalo
is initially far away from the spherical ROI with radius
R = 3 kpc, and we end the simulation when it reaches
the center of the ROI at (x, y, z) = (0, 0, 0) kpc. Note
that, while simulating the stellar trajectories in the grav-
itational potential of the subhalo, we ignore the potential
generated by the stars themselves.

In the right panel of Fig. 1, we show the 1-D likelihood
profile as a function of Msh for the likelihood analysis per-
formed on the simulated data. The TS defined in (13)
(black line) favors the presence of a subhalo with the
correct mass (dotted blue line) over the background-only
hypothesis at a value TS ≈ 12. This matches the expec-
tation based on the likelihood profile from the Asimov
analysis (Eq. (15), shown in red), which in turn agrees
with the likelihood profile constructed on a control sim-
ulation sample without a subhalo (dashed blue).

Observational uncertainties on stellar kinematic data
can alter the likelihood profiles, as they tend to artificially
increase, for example, the velocity dispersion and smear
localized structure. This is illustrated in the right panel
of Fig. 1, using a proposed observational setup similar
to that taken in [35]. We assume that the sky position
uncertainties are similar to those projected for Gaia [36]
and at the level of a few µas for bright stars and a few
hundred µas at the dim end [36]. At distances of a few
kpc from Earth, these uncertainties are expected to be
subdominant compared to the distance uncertainties, de-
termined by photometric parallax. DES, for example,
uses the photometric parallax method with very small
r-band magnitude uncertainties, though there is still an
intrinsic photometric scatter ∼ 0.3 mag; this translates
into a distance uncertainty ∼ 14%.

The proper motion can be measured accurately by
Gaia with uncertainties similar to the position on the
sky, but the conversion to physical velocity involves the
distance of the star. Since the uncertainty on the dis-
tance is much larger than the proper motion error the
latter can be ignored for all practical purposes. For ra-
dial velocities, we assume an uncertainty of 5 km/s, al-
though we expect many stars to be measured more accu-
rately [35] by surveys such as VLT [37, 38], WEAVE [39],
and 4MOST [40]. In our simulations, velocity uncertain-
ties play a sub-dominant role compared to position un-
certainties.

We include 68% confidence bands in Fig. 1, where we
marginalized over different Monte Carlo realizations and
subhalo velocity directions with respect to the line of
sight, assuming a distance of 5 kpc from Earth with un-
certainties mentioned above. The significance for a sub-
halo is slightly reduced and the TS is artificially enhanced
when there is no subhalo present due to the observational
uncertainties. Note that the impact of statistical jitter
on parallax measurements is highly asymmetric to the
extent that the unperturbed curves in Fig. 1 are not con-
tained in the 68% containment bands.

We remark that future surveys such as LSST could sig-
nificantly increase the number density of stars available
for such an analysis, by allowing for dimmer and red-
der stars, which would lead to an enhanced sensitivity to
lower-mass subhalos in the stellar halo.

Discussion.—We have presented a novel method for
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identifying low-mass DM subhalos, potentially down to .
107M�, through their effects on halo stars. The method
requires a large sample of stellar kinematic data, which
may be available with upcoming surveys such as those by
Gaia and LSST.

To estimate the chances of finding a suitable sub-
halo target for such observations within our local Galac-
tic neighborhood, we estimate the number of subha-
los with Msh & 107M� within a 10 kpc spheri-
cal region around the MW to be ∼ 1.5. This esti-
mate arises from assuming a local halo-mass function
dN/(dMshdV ) ≈ 630 kpc−3M−1

� × (Msh/M�)−1.9 [41],
based on an analysis of subhalos in the ELVIS simula-
tion [42] and assuming the subhalo density follows an
Einasto distribution [1, 43]. These numbers were de-
rived from DM-only N -body simulations; it has been
claimed [44, 45], using semi-analytic methods and hy-
drodynamic simulations, that baryonic effects including
increased tidal forces and disk crossings could reduce the
number of subhalos by a factor ∼ 2 [46, 47].

The detection of ∼ 106M� subhalos would likely re-
quire colder and denser stellar populations than available
in the stellar halo, such as populations of MW disk stars.
Searches in the disk may be complicated by additional
sources of out-of-equilibrium dynamics, such as stellar
over-densities, molecular clouds, and density waves. The
prospects of searching for stellar wakes with disk stars
deserve further study.

The analysis proposed in this Letter relies on sev-
eral assumptions that should be analyzed in more de-
tail. First, we have assumed that halo stars are well
virialized, an assumption that could break down in cer-
tain parts of the halo, for example due to the presence
of stellar substructure [48]. More detailed Galactic-scale
simulations could help address this potential issue. More-
over, we have assumed that the background stellar dis-
tribution within the ROI is homogeneous; generalizing
our framework to allow for space-dependent background
distributions should be straightforward and useful for re-
gions near the disk. An additional effect that could be
important is the gravitational back-reaction of the over-
density induced by the subhalos. This may be impor-
tant for subhalos traversing dense regions, such as those
found near the Galactic plane, and for more compact
subhalos that induce larger over-densities. More com-
pact subhalos than those predicted in standard cosmol-
ogy, such as ultra-compact minihalos, could arise from
phase-transitions in the early Universe or a non-standard
spectrum of density perturbations on small scales gener-
ated from dynamics towards the end of inflation [49].

One potential way of testing the stellar wakes formal-
ism could be to utilize nearby globular clusters, such as
47 Tucanae and Omega Centauri with masses & 106 M�,
as targets. Globular clusters are more compact than DM
subhalos and are often located near the Galactic plane,
where stellar number densities are higher than in the

halo.

An open-source code package for performing the likeli-
hood analysis presented in this Letter, along with exam-
ple simulated datasets, is available at https://github.

com/bsafdi/stellarWakes.
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