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We propose a spatio-temporal quench protocol that allows for the fast preparation of ground
states of gapless models with Lorentz invariance. Assuming the system initially resides in the
ground state of a corresponding massive model, we show that a superluminally-moving ‘front’ that
locally quenches the mass, leaves behind it (in space) a state arbitrarily close to the ground state
of the gapless model. Importantly, our protocol takes time O (L) to produce the ground state of a
system of size ∼ Ld (d spatial dimensions), while a fully adiabatic protocol requires time ∼ O

(
L2

)
to produce a state with exponential accuracy in L. The physics of the dynamical problem can be
understood in terms of relativistic rarefaction of excitations generated by the mass front. We provide
proof-of-concept by solving the proposed quench exactly for a system of free bosons in arbitrary
dimensions, and for free fermions in d = 1. We discuss the role of interactions and UV effects
on the free-theory idealization, before numerically illustrating the usefulness of the approach via
simulations on the quantum Heisenberg spin-chain.

Introduction. A central challenge in harnessing the
power of artificial quantum matter—for quantum com-
puting and other technological purposes or for theo-
retical investigation—is that of quantum state prepa-
ration. While much progress has been made in engi-
neering extremely isolated quantum systems—ultracold
atoms in optical lattices1–4 or traps5,6, nitrogen vacancy
centers7–12, ion traps13–15, superconducting qubit struc-
tures16–19—as these systems grow more complex, it be-
comes harder to devise equally elaborate tools to ma-
nipulate them while maintaining isolation from sources
of decoherence. It is thus important to find theoretical
answers to how efficiently specific quantum states can be
prepared, and the minimum set of knobs required for this
purpose.

In this regard, adiabatic evolution has served as a ba-
sis for many investigations (cf. Ref.20). The idea here
is to prepare the system in an eigenstate of a Hamilto-
nian that is easily accessible and subsequently tune the
Hamiltonian slowly to evolve this eigenstate into the tar-
get state. The limitation of this approach is speed; to
avoid exciting the system in the process, the time taken
must be of the order of the inverse-square of the small-
est instantaneous spectral gap between the target and
excited states, a quantity which diverges in the thermo-
dynamic limit for many systems of interest.

To achieve faster preparation, recent work has
proposed engineering counter-diabatic drives21–23 that
counter the production of excitations during adiabatic
evolution, or more radically, introducing ‘optimum-
control’ protocols24–28 (including ‘bang-bang’ proto-
cols29–32) that entirely dispense with the adiabatic
ansatz. As of now, a transparent theoretical prescrip-
tion for diabatic protocols exists only for finite-size
systems and how these insights may be extended to
thermodynamically-large systems is unclear. Another
body of work33,34 has proposed spatial quenches wherein
a large chunk of the system serves as a bath to remove
entropy from the subsystem of interest.

FIG. 1. The protocol: the local mass is tuned to zero along
a front moving at superluminal speed vs > c. As vs → c+,
right-moving waves form a shockwave carrying all the energy
released in the quench, while the region x < ct, populated only
by infinitely red-shifted left-moving waves is left unexcited.

In this letter, we provide a novel example of a di-
abatic protocol for preparing the ground state of a
class of gapless systems—those with emergent Lorentz
invariance—starting from the ground state of a corre-
sponding model with an additional term that opens a
gap. Such models naturally arise in the low-energy de-
scription of various condensed-matter systems, includ-
ing one-dimensional quantum gases35 and the Hubbard
model at half-filling36 in the strong coupling limit. We
assume that the ground state of the massive model is eas-
ier to prepare due to the presence of a gap. Our approach
differs from approaches inspired by the adiabatic ansatz
in that it leads to generation of excitations; instead our
strategy is to invoke the symmetry of the model to ‘shep-
herd’ excitations in a way that leaves a thermodynami-
cally large region completely unexcited.

Specifically, we consider performing a spatio-temporal
quench37,38 wherein the local mass/gap is tuned to zero—
abruptly, or on some time-scale τ—along a superluminal
trajectory x = vst as illustrated in Fig. 1. Here vs > c,
where c is the speed of “light” in the emergent critical
model. The quench front then serves as a source of exci-
tations that emanate from the point x = vst, and travel
onwards in all directions. Due to the motion of the front,
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right-moving excitations get blue-shifted and are popu-
lated at higher energies, while left-movers get red-shifted
and carry less energy. As the quench speed vs → c+, the
associated Doppler factor diverges and the left-moving
modes are left entirely unpopulated.

In the one-dimensional case, for non-interacting mod-
els, this chirality has a huge consequence: the region
x < ct is populated only by left-moving excitations
(right-movers move past into the region x ∈ [ct, vst]) and
is thus cold. These notions apply in higher dimensions
albeit with minor modifications. We provide proof-of-
concept with an exact solution of the quench for free
relativistic bosons (in dimension d ≥ 1) and fermions (in
d = 1) for the locally instantaneous case (τ = 0, finite
vs). Our protocol takes time ∼ O(L/c) to produce a
state arbitrarily close to the ground state of the mass-
less theory. We show that a spatially-uniform, adiabatic
protocol (vs = ∞, finite τ) by contrast produces a state
exponentially close to the ground state in time ∼ O

(
L2
)
,

parametrically slower than our protocol.
Next, we describe how our results apply to a general

setting with interactions, band-curvature and ultraviolet
effects. We first note that the total energy produced in
the quench is, in fact, independent of vs when τ = 0—
thus, cooling occurs purely due to spatial reorganization
of the released energy into hot and cold regions, an effect
that can be reversed by interactions favoring homoge-
nization. It also calls into question our use of effective
low-energy descriptions particularly in the limit vs → c
where the whole energy is localized in a vanishingly small
region. We argue that introducing a finite τ (that does
not scale as L) resolves these issues: a new time-scale
τ ′ = γsτ emerges and controls the adiabaticity of the pro-
cess. This time-scale diverges in the limit vs → c as per
the Lorentz factor γs = 1/

√
1− 1/v2s . Thus, the super-

luminal front enhances the time-scale τ that introduces
adiabaticity. We validate the effectiveness of our proto-
col via numerical simulations on an anti-ferromagnetic
Heisenberg chain with a gap induced by a Néel field, as
well as a classical model of phonons.

At the time of writing, we became aware of a simi-
lar proposal39,40 in the Kibble-Zurek literature wherein
a critical velocity for front propagation was proposed us-
ing scaling arguments. Our work demonstrates why this
critical velocity is exactly c and the importance of rela-
tivistic effects in engendering perfect cooling. Moreover,
Ref.39 considers a trans-critical protocol (transforming
one gapped state into another, passing through a critical
point) as opposed to our work focussing on the creation
of the critical ground state. A description of scaling prop-
erties of correlations in such inhomogeneous protocols, in
the spirit of Ref.41 will be discussed in forthcoming work.

Model. We study the following class of quench models
described by the Lagrangian density Lb:

Lb = ∂µφ · ∂µφ−m2φ2f [(x− vst) / (vsτ)] , (1)

with f(x) = 1
2 [1 + tanh(x)]. We set c ≡ 1; ∂µ ≡ (∂t,∇)

and ∂µ ≡ (∂t,−∇). The function f sets the local mass

to m everywhere at t = −∞ and 0 at t = ∞. The
fields live in a box of linear dimension L and satisfy usual
commutation relations42. We assume that the system is
initially in the ground state of the massive theory.

The massless Lagrangian may describe the low-energy
physics of a range of gapless one-dimensional systems,
including many spin43, boson and fermion models35, or
in two-dimensions, spin-waves in the Hubbard model at
half-filling36, etc.. A local gap in spin models may be
opened by applying local magnetic fields or dimerization.

Solution for τ = 0, finite vs. Here f(x) = Θ(x);
the quench takes time tq = L/vs from start to finish.
The field operator at all times t < x/vs can be writ-
ten in terms of a mode expansion φ(r, t < x/vs) =∑
n

[
bnvn(x, t) + b†nv

∗
n(x, t)

]
, where vn are solutions to

the massive Klein-Gordon equations, and bn are bosonic
operators associated with these modes. We work in the
Heisenberg picture, fixing the initial state to |0〉 defined
by the condition bn |0〉 = 0∀n. The condition vs > c en-
sures that no perturbations (traveling at speed c) due to
the quench affect the space-time region t < x/vs and the
mode expansion is valid.

For times t > x/vs, the field opera-
tor evolves as per the massless solutions un:
φ(r, t > x/vs) =

∑
n

[
bnγn(r, t) + b†nγ

∗
n(r, t)

]
,

where γn =
∑
m [αn,mum + βn,mu

∗
m] is deter-

mined by matching boundary conditions, that
is, Dγn(r, t = x/vs) = Dvn(r, t = x/vs) with
D ∈ {1, ∂t, ∂x,∇⊥}. The ‘Bogoliubov’ coefficients αn,m
and βn,m can be found by evaluating appropriate Klein-
Gordon norms, as described in Ref.44. All correlations
subsequent to the quench can be evaluated using the
above mode expansion, and applying Wick’s theorem on
the state |0〉.

Chiral emanation. The energy density after the
quench can be evaluated as ε(r, t) =

∑
n |∇γn|

2
+

|∂tγn|2 ≈
∑

k ωkNk |uk(r, t)|2. The approximation is
valid in the infinite size limit, neglecting time-dependent
terms involving products of wave-functions with two dif-
ferent momenta or terms of the form uk · u−k ∼ e−2iωkt

which rapidly dephase. The population of modes is de-

pendent on the direction k̂ of the mode with momentum

k = kk̂:

Nk =

(
Ωη(θ)k − ωη(θ)k

)2
4Ωη(θ)kωη(θ)k

η(θ)ωk�m→ m

4η(θ)ωk
(2)

where Ωk ≡
√
k2 +m2, ωk ≡ k and η(θ) = γs(1 −

us cos θ) where us = 1/vs < 1. θ is the angle between

k̂ and x̂, ranging from 0 for right-movers to π for left-
movers. For the uniform quench (vs = ∞) we note
that η(θ) = 1. For vs → c+, η(0) ≡ 1/η0 → 0, while
η(π) = η0 → ∞; consequently, the energy Nkωk carried
by left-moving waves vanishes ∀k in this limit. In d > 1,
most of the emission occurs in directions perpendicular
to the motion of the front. Cooling in higher dimensions
is based on the fact η(π/2) = γs also diverges in this
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FIG. 2. (a) The energy density is determined by tracing the excitations impending on it to the quench front. At the end of the
quench, εth.(x) is uniform in the region x > −L/2+ctq. (b) εth.(x) for us = 0.5 for various d. For d > 1, the curve is smooth for
x ≤ −L/2 + ctq = 0. (c) εth.(x) in d = 2 for us = {0, 0.4, 0.6, 0.8, 0.9}; inset is minxεth.(x) as a function of us for d = {1, 2, 3}.
The ‘hot’ region grows slimmer and the transition into the ‘cold’ region grows sharper as us → 1 in any dimension.

limit vs → c+; this Doppler shift of orthogonally emitted
radiation is a purely relativistic effect.

Energy density after quench. To calculate the space-
and time-dependence of the energy density, slow time-
dependent correlations cannot be neglected. Their effect
however can be captured using a simple physical picture
of ‘heat waves’ as described in Ref.38 for d = 1, but
which we find to be valid generally. In particular, ex-
citations emanate from the quench front, carrying an

energy ωkNk which depends on k̂. The energy den-
sity at the end of the quench at any point, εth.(x), is
given by the average energy of all excitations emanating
from the quench front and ending at this point. These
ideas are empirically verified in Fig. 1 of Ref.44. Here
we focus on the aspect of ‘cooling’ and calculate the en-
ergy density at the end of the quench. First, note that
the energy carried by waves emitted in the θ direction

is given by εθ ∝
∫m/η(θ)

kd−1dk ωkNk ∝ m
4

1
η(θ)d+1

1
Ld

m
,

where Ldm = (m/c)d has dimensions of volume. Higher
momenta modes yield a parametrically similar contri-
bution. (UV divergences occur for d ≥ 3 but these
are eliminated using finite τ .) Summing the contribu-
tion from these chiral waves yields in d = 1, εth.(x) =
1
η20

Θ(−x − L/2 + ctq) + 1
2

(
η20 + 1

η20

)
Θ(x + L/2 − ctq);

thus, the energy density goes to zero for x < L/2 in the
limit vs → c+ and all the energy is singularly located at
x = L/2. Similarly, for d > 1, using the picture in Fig. 2
(a), we find (see Ref.44 for a more elaborate derivation)

εth. (x) =

∫ π
θx

sind−2 θ εθ +
∫ π
π−θx sind−2 θ εθ∫ π

0
dθ sind−2 θ

,

θx = Re
[
cos−1 ((x+ L/2)/(usL))

]
. (3)

where sind−2 θ is the appropriate angular measure in di-
mension d > 1. Some features of εth.(x) in different di-
mensions are shown in Fig. 2. Importantly, a thermo-
dynamically relevant region is seen to become infinitely
cold for vs → c+.

Infinite accuracy. The above discussion assumed the
limit L→∞ to find the energy of excitations emanated

in different directions but the distinction between ‘left’
and ‘right’ is meaningless at momenta ∼ 1/L. The
population of these modes is instead found to scale as
Nk = m

4γs
. Importantly, a) this population also goes to

zero as vs → c+; b) it can be shown that this result
is unaffected by finite L (a technical discussion and nu-
merical confirmation is presented in Ref.44). Thus, the
population of the lowest momentum modes can be tuned
arbitrarily close to zero in our protocol.

Adiabatic Cooling: Solution for finite τ , vs = ∞. In
this case the quench occurs uniformly in space, but on
a time-scale τ . The time-dependent equations of mo-
tion can be solved exactly for fixed momenta to find two
complete sets of modes uad.k and vad.k that behave like
the massless and massive modes uk and vk at t = ∞
and t = −∞ respectively—for details, see Section 3.4 of
Ref.45 where an analogous problem is solved for fields
evolving in a time-dependent metric. Thus, the initial
state can be described as a vacuum of the quanta bad.k of
the modes vad.k . The population of the quanta aad.k of the

modes uad.k ,
〈
a†ad.k aad.k

〉
, can be found exactly once βk in

aad.k = αkb
ad.
k − βkb†ad.(−kx,k⊥) is determined. We find

Nad.
k = |βk|2 =

sinh2
(
π
2 τ(Ωk − ωk)

)
sinh (πτωk) sinh (πτΩk)

mτ�1−→
k>τ−1

e−2πωkτ .

(4)
One can easily check that to obtain an energy density
ε(x) ∼ e−L, the time required scales as τad. ∼ O(L2).
Thus, our proposed superluminal protocol which takes
time∼ O(L) is more efficient than the adiabatic protocol.

Bosons vs. fermions. The fundamental conclusions
above are unchanged for relativistic theories with dif-
ferent statistics. We examine this in the context of
free fermions in d = 1, governed by the action Lf =
iψ̄∂µγ

µψ−mψ̄ψf [(x− vst) / (vsτ)]. The results for τ =
0, finite vs are obtained analogously to the bosonic solu-
tion; see Ref.44. We find occupation numbers

NF
k =

Ωη(θ)k − ωη(θ)k
2Ωη(θ)k

η(θ)k�m−→ 1

2
. (5)
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FIG. 3. (a) Energy per phonon mode at fixed momentum k. At large vs, all modes are uniformly excited. As vs → 1, low
energy ‘critical’ modes are cooled, but UV modes remain unaffected. UV mode population is controlled by increasing τ . (b)
t-DMRG simulation of the quench in a Heisenberg chain for hz = 3, τ = 2, and vs/c = 3.2/π. The initial state has an energy
∼ 20% of band-width above ground state while the final energy density is ∼ 0.62%. A linear ramp yields a state that is 3 times
hotter in the same time. (c) Energy density in the middle half of the chain at tq is seen to lie below ε(0)/γs and follows ε(0)/η0
for a large range of vs. Here, hz = 3, τ = 0.1, c = π/2.

Thus, for fermions, excitations are populated up to a
‘chemical potential’ that is Doppler-shifted ∼ m/η(θ) as
opposed to the bosonic case where the population at low
momenta can be captured by a Doppler-shifted effective
temperature38,46.

Realistic models: Combination of adiabatic and super-
luminal cooling. For τ = 0, cooling occurs due to spatial
separation of cold and hot regions—one can verify that∫
dx εth.(x, tq) = 1, and thus independent of vs. Thus,

one anticipates that interactions, which lead to a homog-
enization of the energy density, spoil the cooling effect.
We now provide arguments showing how the introduction
of finite τ resolves this issue. First, we note that the su-
perluminal quench can be analyzed in a Lorentz-boosted
frame moving at speed us = 1/vs < 1. In this frame, the
quench occurs uniformly in space. This analogy is clearly
useful for τ = 0: one may recover the result of the su-
perluminal quench, Eq. (2), using the uniform, adiabatic
quench result in Eq. (4) and Doppler shifting the mo-
menta to obtain population of modes in the laboratory
frame.

For large momenta k � 1/L, we can ignore the break-
ing of Lorentz symmetry by the walls, and use the above
intuition to find the population of modes at finite τ and
vs. In the boosted frame, the mass term transforms as
f [(x− vst)/(vsτ)] → f [−t′/τ ′]; thus τ ′ = γsτ emerges
as the effective time-scale for the quench in the boosted
frame. Doppler-shifting back into the laboratory frame,
we find that the population of modes begins to decay
rapidly for η(θ)ωk � τ−1/γs. Thus, the cut-off deter-
mining the direction-dependent energy density εθ is now
set by m/γs for τ−1 ≈ m instead of m (see Eq. 2). This
implies that the average energy density εss.+ad. = εss./γ

d
s

goes to zero in the limit vs → c+ for finite τ , suggesting
that the protocol can be useful for preparing the ground
state of interacting models.

UV effects. The linear dispersion ωk = ck is crucial to
the Doppler physics we rely on for our diabatic protocol.
Beyond a certain energy scale (for instance, set by the lat-
tice), this assumption breaks down and UV modes have a
k-dependent group velocity vg(k) < c. The effective cool-
ing/heating factor for these modes can be estimated47 as

before with γs(k) = 1/
√

1− (vg(k)/vs)
2
—this is going

to deviate minimally from 1 when vg(k) is much smaller
than c. UV modes are thus excited in a non-chiral way. In
the event that the UV scale Λ < m/η(θ) and τ ′−1/η(θ),
we expect the energy density εθ ∼ 1/η(θ), which is yet
different from previous cases. In d = 1, this predicts a
cold region with energy density m/4η0 separated from a
hot region with energy density γsm/4; the average energy
density is m/4γs.

We next describe simulations of the proposed quench
on a classical model of non-interacting phonons to study
UV physics, and subsequently study its efficacy on an
interacting model—the Heisenberg spin chain.

Classical phonons. We study the classical system
with Hamiltonian H = 1

2

∑
i(xi − xi+1)2 + v2i + m2x2i

where m is quenched as per Eq. (1). Each mode is given

an initial energy εk ∼
√
m2 + 4sin2(k/2) akin to the vac-

uum point energy in an equivalent quantum model. The
simulations allow us to verify some expectations for the
role of τ and vs in a non-interacting setting; see Fig. 3
(a).

Heisenberg chain. We perform time-dependent
DMRG simulations (using iTensor48) of the anti-
ferromagnetic Heisenberg chain with alternating local
fields setting the mass. A two-dimensional version of this
model applies to the low-energy physics of the half-filled
Fermi-Hubbard model at large Hubbard-U, currently
of interest in several ultra-cold atom experiments. The
Hamiltonian readsH = J

∑
x Sx·Sx+1+

∑
x(−1)xh(x, t),

where the magnetic field h(x, t) is eliminated from the
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center outward according to the functional form set by
hzf(x) as in Eq. (1). In the non-interacting assumption,
the middle region x ∈ [L/2− ct, L/2 + ct] is illuminated
by only cold excitations moving against the front, while
both hot (moving with the front) and cold excitations
inundate space elsewhere; these ‘heat waves’ are also
observed in the Heisenberg chain (see Ref.44) although
boundaries are blurred due to interactions. The cooling
efficacy of the protocol is illustrated in Fig. 3 (b) for
vs/c ≈ 1 and τ = 2; in Fig. 3 (c) we examine the energy
density in the middle half of the chain at the end of
the quench and quantitatively verify it lies below the
expected energy density ∼ ε(0)/γs (either at small or
large τ , as per above arguments) for the complete chain.

Summary and conclusions. In this work, we provided
a non-adiabatic method for preparing the ground states
of models with Lorentz symmetry. An exact analysis
was presented for free relativistic bosons and fermions

while analytical arguments and numerical simulations
were used to examine the usefulness of our approach for
realistic systems with UV effects and interactions. Our
protocol should be accessible in experiments in a wide
range of setups hosting artificial quantum matter14,49,
particularly ultra-cold atoms1,2,50,51, where an adapted
version may serve as an alternate route to preparation of
the ground state of the Hubbard model at half-filling in
the strong-coupling limit.
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