
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Floquet Supersymmetry
Thomas Iadecola and Timothy H. Hsieh

Phys. Rev. Lett. 120, 210603 — Published 24 May 2018
DOI: 10.1103/PhysRevLett.120.210603

http://dx.doi.org/10.1103/PhysRevLett.120.210603


Floquet Supersymmetry

Thomas Iadecola1, 2, 3 and Timothy H. Hsieh2, 4

1Physics Department, Boston University, Boston, Massachusetts 02215, USA
2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

3Joint Quantum Institute and Condensed Matter Theory Center,
Department of Physics, University of Maryland, College Park, Maryland 20742, USA
4Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

(Dated: April 27, 2018)

We show that time-reflection symmetry in periodically driven (Floquet) quantum systems enables
an inherently nonequilibrium phenomenon structurally similar to quantum-mechanical sypersym-
metry. In particular, we find Floquet analogues of the Witten index that place lower bounds on
the degeneracies of states with quasienergies 0 and π. Moreover, we show that in some cases time
reflection symmetry can also interchange fermions and bosons, leading to fermion/boson pairs with
opposite quasienergy. We provide a simple class of disordered, interacting, and ergodic Floquet
models with an exponentially large number of states at quasienergies 0 and π, which are robust as
long as the time-reflection symmetry is preserved. Floquet supersymmetry manifests itself in the
evolution of certain local observables as a period-doubling effect with dramatic finite-size scaling,
providing a clear signature for experiments.

Quantum systems driven by time-periodic perturba-
tions are ubiquitous in atomic, molecular, and optical
physics [1–3]. In recent years, periodic driving has been
exploited by theory [4–12] and experiment [13–17] as
a resource for quantum simulation; by varying certain
control parameters periodically in time, intricate effec-
tive Hamiltonians can be realized for synthetic quan-
tum systems that might be outlandish in the context
of solid-state physics. However, the analogy between
static and periodically-driven (Floquet) quantum matter
only goes so far. Being time-dependent, Floquet systems
do not conserve energy and generically heat up to infi-
nite temperature. They lose any discernible phase struc-
ture [18, 19] unless some notion of integrability [20–22],
many-body localization (MBL) [9, 23–26], or prethermal-
ization [27–34] is invoked.

With any of these three stabilizing mechanisms, Flo-
quet systems have exhibited many new phases that lack
equilibrium counterparts. These include a vast array
of Floquet topological phases [35–39] and the so-called
“π spin glass” (πSG) [26, 40] or “discrete time crystal”
(DTC) [41, 42] phase, which are the objectives of re-
cent experiments [43, 44]. These Floquet phases share
qualitative features that stem from their nonequilibrium
nature; for example, in all such phases there are certain
operators whose dynamics synchronizes robustly with the
periodic drive in a nontrivial way. This is especially strik-
ing in the πSG/DTC, where the local magnetization ex-
hibits robust subharmonic response at half the driving
frequency.

In this work, we introduce a distinct class of
Floquet systems that also exhibits subharmonic re-
sponse, but for fundamentally different reasons than
the πSG/DTC. We dub this phenomenon “Floquet su-
persymmetry” (FSUSY), as the underlying structure
has many close parallels to quantum-mechanical su-

persymmetry (SUSY). For instance, while SUSY ex-
changes bosons and fermions, FSUSY exchanges forward
and backward time evolution—its generator is a time-
reflection symmetry. Interestingly, as we will show, in
some cases the time reflection operator can also inter-
change bosons and fermions, leading to pairs of bosonic
and fermionic states at opposite quasienergies. SUSY
models are characterized by an invariant, the Witten in-
dex, which provides a lower bound on the ground-state
degeneracy; similarly, FSUSY models are characterized
by two invariants, which place lower bounds on the de-
generacies of the “quasienergies” 0 and π. We emphasize,
however, that FSUSY is not simply a generalization of
SUSY to the Floquet context; rather, as we will show, it
is a distinct property of the time evolution operator of a
Floquet system.

After establishing this general framework, we present
a simple class of interacting, disordered, and ergodic Flo-
quet models exhibiting FSUSY. In these models, the
degeneracies of the 0, π quasienergies are exponentially
large—at least 2L/2, where L is the system size. We show
that this exponentially large degeneracy is robust to any
disorder and interactions preserving the underlying time-
reflection symmetry. Such models show a distinct exper-
imental signature of FSUSY. Local observables exhibit
a subharmonic response; however, in stark contrast to
the πSG/DTC, the response is suppressed exponentially
in system size. This finite-size scaling of the response
serves as sharp evidence of FSUSY. It is remarkable that
this subharmonic response occurs in an otherwise ergodic
quantum system; FSUSY provides an example of a class
of thermalizing Floquet systems which display nontrivial
phenomena in a macroscopic subspace of the full Hilbert
space. Nevertheless, there is no contradiction with er-
godicity, as the subharmonic response scales to zero in
the thermodynamic limit for generic initial states.
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We begin with some definitions. Consider a periodi-
cally driven system with the time-dependent Hamiltonian
H(t+T ) = H(t), with T the driving period hereafter set
to 1 (along with ~). Define the Floquet unitary UF, which
evolves states by one period:

UF |ψ(t)〉 = |ψ(t+ 1)〉 . (1)

UF has eigenstates {|E〉} with corresponding eigenvalues
{eiE}; the quasienergies {E} are defined modulo 2π.

We say that UF has time-reflection symmetry if there
exists a unitary operator R satisfying R2 = 1 and

RUFR
† = eiθU†F. (2)

We hereafter set θ → 0 by redefining UF → eiθ/2UF.
Since R maps the “forward” Floquet evolution opera-
tor UF to the “backward” Floquet evolution operator

U†F, it can be interpreted as reversing the direction of
time. However, unlike the usual time-reversal operator,
R is unitary, hence the name “time-reflection symmetry.”
(The corresponding symmetry for the effective Hamilto-
nian is called chiral symmetry, see e.g. Ref. [45].) Using
Eq. (2), we can deduce the action of R on the Floquet
eigenbasis:

UF (R |E〉) = e−iE(R |E〉). (3)

R thus maps eigenstates of UF with quasienergy E to
eigenstates of UF with quasienergy −E. Hence,

〈E|R |E〉 = 0 if E 6= 0, π. (4)

In the E = 0, π eigenspaces, UF = U†F, so (2) implies that
R and UF share a common eigenbasis for the E = 0, π
states. We will label the common eigenbasis for E = 0(π)
as {|0(π), α〉} where α = 1, . . . , N0(π) and N0(π) is the

degeneracy of the E = 0(π) eigenspace. Because R2 = 1,

〈0, α|R |0, α〉 = ±1

〈π, α|R |π, α〉 = ±1.
(5)

These properties motivate the definition of two trace
formulas which we will prove to be integers providing
lower bounds for the degeneracies N0,π. Define I0, Iπ as

I0(π) ≡ tr

(
R
UF ± 1

2

)

=

N0(π)∑
α=1

〈0(π), α|R |0(π), α〉 ,
(6)

where we have used (4). Moreover, (5) implies that both
invariants are integers and |I0(π)| ≤ N0(π); these invari-
ants thus provide a lower bound for the number of 0 and
π quasienergy eigenstates, respectively.

Given time reflection symmetry, I0(π) are topological

invariants in the following sense. Consider any small per-
turbation to UF which preserves the time-reflection sym-
metry (2). We expect that the time reflection operator R
for which (2) holds will change continuously as UF is per-
turbed; we illustrate this later in a concrete model. Since
the trace is a continuous function of R and UF , small
changes in the arguments must lead to small changes in
I0(π). Because the latter are integers, they must remain
invariant. Hence, any symmetry-respecting perturbation
continuously connected to the identity operator will not
change the trace invariants I0(π). We emphasize that the
existence of these invariants and the subsequent proper-
ties depends essentially on the presence of time-reflection
symmetry.

At this point, it is useful to draw contrasts and compar-
isons with ground states of static systems. At first glance,
this symmetry-protected “pinning” of quasienergy eigen-
values to 0 or π may be reminiscent of the protection of
certain zero-energy modes in symmetry protected topo-
logical phases [46–50]. In systems with topological de-
fects or boundaries, zero modes may appear as bound
states protected by index theorems that define topolog-
ical invariants similar to Eq. (6) [51, 52]. However, in
our Floquet setting there is no such bulk-boundary cor-
respondence nor defects; the symmetry-protected 0 and
π quasienergy modes are bulk entities.

In fact, the closest static analogues of these protected
many-body degeneracies arise in SUSY [53, 54], where
the relevant topological invariant is the Witten index [55]
tr[(−1)F e−βH ], with H the Hamiltonian, F the fermion
number, and β the inverse temperature. The (integer)
Witten index places a lower bound on the number of
eigenstates at zero energy, and thereby on the ground-
state degeneracy ofH. One remarkable phenomenon that
can arise in certain SUSY models is “superfrustration,”
where the Witten index scales exponentially with system
size [53, 56–58].

Within this algebraic framework, there is potential
for another connection to SUSY. In systems with a
conserved fermion parity (−1)F , one possibility is that
{(−1)F , R} = 0, in which case time-reflection changes
the fermion parity of an eigenstate. In this case, any
bosonic state at quasienergy E must have a fermionic
partner with quasienergy −E. This is in stark contrast
to conventional SUSY, which exhibits pairs of bosonic
and fermionic states at the same energy.

We now present a simple model of FSUSY that fea-
tures exponentially large degeneracy for even system
sizes, and boson/fermion partners at equal and opposite
quasienergy for odd system sizes. For the sake of expo-
sition, we begin with the simplest model below and add
interactions later. Consider a spin- 12 chain with L sites
and the two part drive

UF = UZZ UX , (7a)
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UZZ ≡ exp

(
i
π

4

L∑
i=1

ZiZi+1

)
(7b)

UX ≡ exp

(
−i

L∑
i=1

hiXi

)
. (7c)

Here, Xi, Zi are Pauli operators on the site i, and hi are
random couplings. We hereafter impose periodic bound-
ary conditions (identifying sites 1 and L+ 1).

The model (7) has time-reflection symmetry, generated
by the operator

R1 = U†X

L∏
i=1

Zi. (8)

To see that R2
1 = 1, one can rewrite R1 =

U
1/2†
X (

∏L
i=1 Zi) U

1/2
X ≡

∏L
i=1 Z̃i, where Z̃i ≡

eihiXi/2 Zi e
−ihiXi/2. Using the fact that UZZ = iL U†ZZ ,

one verifies that Eq. (2) holds with θ = Lπ/2. Observe
that R1 depends explicitly on UF, just as the generator
of SUSY depends explicitly on the Hamiltonian.

In fact, one can define another time-reflection operator

R2 = UZZ

L∏
i=1

Zi (9)

with the requisite properties (setting θ = Lπ/2), and
UF = R2R1. Again, this parallels SUSY, in which
the Hamiltonian is constructed from the SUSY gener-
ators [54].

Having established time-reflection symmetries in this
model, we calculate the trace invariants (6) and find

|I0(π)| =

{
2L/2 L even

0 L odd
(10)

(for both R1,2). Thus, for even system sizes, there is an
exponentially large number of states with quasienergy
0, π. (See also [59].)

The above model can be rewritten in terms of free
fermions via a Jordan-Wigner transformation. Inter-
estingly, the fermion parity operator (−1)F =

∏L
i=1Xi

(anti)commutes with the time reflection operators for
even (odd) L. Thus, while the odd-L case does not host
an exponentially large |I0(π)|, it does exhibit an uncon-
ventional pairing of bosonic and fermionic states at equal
and opposite quasienergy.

Crucially, the above properties are not artifacts of free
fermions; the invariants I0,π are robust to any interaction
that preserves time-reflection symmetry, while the pair-
ing of bosonic and fermionic states additionally requires
maintaining fermion parity conservation (Ising symmetry
in the spin language). To illustrate this, we add interac-
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FIG. 1. (Color online) Statistics of quasienergy levels outside
of the degenerate subspaces in the model (7), as measured by
the parameter r defined in Ref. [60]. All data points are av-
eraged over disorder realizations and quasienergy (see main
text). Gray dashed lines at r = 0.386 and 0.527 indicate the
expected values for the Poisson and Wigner-Dyson distribu-
tions, respectively.

tions to the transverse-field part of the drive:

UX → UH ≡ exp

[
−i

(
L∑
i=1

hiXi + gHint

)]
, (11)

where g parameterizes the strength of interaction and
we demand that Hint anticommutes with

∏L
i=1 Zi. The

modified system then maintains time-reflection symme-
try, with the modified time-reflection operator R =
U†H

∏L
i=1 Zi. (If Hint additionally commutes with∏L

i=1Xi, then the unconventional boson/fermion pairing
for odd L also remains.) As a result, the trace invariants
(and exponentially large degeneracies) remain the same
even in the presence of these interactions. In [59], we
provide an alternative way to understand the degeneracy
as arising from the intersection of two large subspaces;
this derivation also explains why the model’s properties
are robust to interactions of the above type.

We now focus on the case of even L, and investigate
some consequences of the macroscopic degeneracies pro-
tected by the indices I0,π For the purpose of numerics,
we specify to the choice

Hint =

L∑
i=1

(
Jxzi XiZi+1 + Jxxxi Xi−1XiXi+1

+Jzxzi Zi−1XiZi+1

)
,

(12)

and we draw the random couplings hi, J
xz
i , Jxxxi , and

Jzxzi uniformly from the interval [0, π/2].
One might wonder whether the symmetry constraint

(2), which is evidently strong enough to protect expo-
nentially large degeneracies, is also strong enough to
constrain the many-body spectrum outside of the de-
generate subspaces. Given the presence of strong dis-
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FIG. 2. (Color online) A representative time-series of the
magnetization MX starting from an initial state with all spins
polarized in the X = +1 direction, for a single disorder real-
ization in the interacting version of the model (7) with L = 8
and g = 1 [see Eqs. (11) and (12)]. Period-2 oscillations
around the expected infinite-temperature value 〈MX〉 = 0 are
clearly visible at late times. Inset: power spectrum 〈IX(ω)〉
for the same L and g, averaged over 20000 disorder realiza-
tions. The dominant coherent structure in the power spec-
trum is the peak at ω = π, which results from the period-2
oscillations.

order, are there signatures of many-body localization in
this system? To answer these questions, we performed
exact diagonalization at system sizes L = 6, 8, and 10
(for 20000, 10000, and 5000 disorder realizations, respec-
tively) and computed the disorder-averaged level statis-
tics of the states outside the 0, π subspaces. We com-
puted the parameter r [60]; given an ordered list {Ej} of
quasienergies, r is defined in terms of the quasienergy
gaps δj ≡ Ej+1 − Ej as the average of the quantity
rj = min(δj , δj+1)/max(δj , δj+1) over quasienergy (j)
and disorder realizations. Even at these very small
system sizes, we see level statistics consistent with the
Wigner-Dyson distribution for g & 0.2 (see Fig. 1). Thus,
apart from the protected degeneracies, the model (7) ap-
pears to be a generic ergodic system.

Nonetheless, we now show that the protected degen-
eracies give rise to a distinct subharmonic response which
serves as a direct signature of Floquet supersymmetry. In
particular, the time evolution of the expectation values
of certain operators exhibit period-2 oscillations. This
follows directly from the existence of 0, π states, which
are protected by FSUSY. Assume there is at least one
protected pair of states with quasienergy 0, π, and de-
note by D the space spanned by the two states. Then
the Floquet operator restricted to D can be represented
by ZPD, where PD is the projection onto D and Z is
a Pauli-Z operator in the basis of the 0, π quasienergy
states. Hence, the operator XPD will flip sign every pe-
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FIG. 3. (Color online) Magnitude of the peak in 〈IX(ω)〉 at
ω = π as a function of system size, with an exponential fit
(gray, dashed line) and the estimate (13) (orange) plotted for
reference. The model used to generate the data is that used in
Fig. 2. Data are averaged over 40000, 20000, 10000, and 5000
disorder realizations for L = 6, 8, 10, and 12, respectively.

riod, as {Z,X} = 0. Note that in this general discussion
ZPD and XPD may be nonlocal operators; however, in
the model (7), there is a local operator, namely the on-
site Xi, which flips sign under the Floquet evolution re-
stricted to the degenerate subspaces (see [59]).

Therefore, in the time evolution of X = XPD +X(1−
PD), the latter piece will decay to zero because the com-
plement ofD is generically ergodic, while the former piece
contributes the period-2 oscillations. However, the ratio
of the size of D to that of the entire Hilbert space de-
creases exponentially with system size L. Hence, if one
evolves from a random initial state, then the amplitude
of such period-2 oscillations will decrease exponentially
with L, a phenomenon that distinguishes FSUSY from
the πSG/DTC phase. In fact, such dependence on sys-
tem size also occurs in signatures of SUSY in Majorana
models with translation symmetry [61].

We have checked these properties in the above model
by computing the time evolution of the total magneti-
zation MX = 1

L

∑L
i=1Xi starting from an initial state

with all spins polarized in the X = +1 direction. A
representative time series for L = 8 is shown in Fig. 2.
Plots of the expectation values of single-site Xi operators
look similar. A useful figure of merit for quantifying this
subharmonic response is the power spectrum 〈IX(ω)〉,
obtained by taking the modulus-squared of the Fourier
transform of 〈MX(t)〉, which displays a peak at ω = π
if 〈MX(t)〉 exhibits period-2 oscillations. We indeed find
such behavior in the power spectrum; averaging over dis-
order realizations, we find a single peak at ω = π, and
all other structure washes out (see Fig. 2 inset).

For a typical initial state, which has overlap with all
eigenstates of UF, we can estimate (up to a multiplicative
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prefactor) that

〈IX(π)〉=
∣∣∣∑
E,E′,
α,α′

c∗E,αcE′,α′〈E,α|MX |E′,α′〉 δ(E−E′−π)
∣∣∣2

. 2−L, (13)

where cE,α = 〈E,α|ψ〉 is the overlap of eigenstates with
the initial state |ψ〉. This exponential upper bound on the
finite-size scaling of 〈IX(π)〉 results from the fact that the
degenerate quasienergy eigenstates constitute a fraction
of order 2−L/2 of all eigenstates of UF. We see finite-
size scaling of the disorder-average of 〈IX(π)〉 in exact
diagonalization that is consistent with this estimate (see
Fig. 3). Our simulations were carried out at g = 1, so
that the energy levels outside the degenerate subspaces
are approximately Wigner-Dyson-distributed. It is in-
teresting that even in this chaotic regime, there are still
coherent period-2 oscillations. Although this effect disap-
pears in the thermodynamic limit due to the exponential
suppression described above, it should be accessible in
quantum simulation experiments, which are performed
at a variable finite size.

We note that the persistence of the oscillations de-
scribed above depend crucially on the presence of time-
reflection symmetry; without it, the oscillations acquire
a finite lifetime. However, in [59] we show that, for suf-
ficiently small time-reflection breaking, the oscillations
can persist long enough to be experimentally observable.

There are several interesting avenues to pursue re-
garding both Floquet supersymmetry and the particu-
lar class of models presented. FSUSY provides an alter-
native mechanism for achieving subharmonic response;
whereas the robustness in the discrete time crystal relies
on the rigidity of eigenstates (long-range correlations in
space), the robustness in FSUSY relies on the rigidity
of the eigenvalues pinned to 0, π, a consequence of the
underlying time-reflection symmetry. Moreover, FSUSY
provides a mechanism whereby a protected subspace can
exhibit nontrivial phenomena (e.g., period-2 oscillations)
despite being embedded in a thermal system. Thus, even
though non-integrable systems without many-body lo-
calization may heat to infinite temperature, it may be
possible that a subspace (whose dimension can grow ex-
ponentially with system size) can behave nontrivially, as
FSUSY illustrates.

The most pressing question concerning the model (7)
at even L is that of the nature of the degenerate states—
aside from their fixed quasienergy, do they have any spe-
cial properties that are not shared by the rest of the eigen-
states of UF? The derivation of the degenerate states as
the intersection of two large subspaces in [59] suggests
that the degenerate states may be highly entangled, but
it would be useful to quantify the amount of entangle-
ment. It would also be interesting to consider whether
the protected macroscopic degeneracy could be useful for

quantum information processing. Having access to an
exponentially large number of exactly degenerate eigen-
states could aid in the coherent storage and manipulation
of quantum information.
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