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Spin systems with frustrated anisotropic interactions are of significant interest due to possible
exotic ground states. We have explored their phase diagram on a nearest-neighbor triangular lattice
using the density-matrix renormalization group and mapped out the topography of the region that
can harbor a spin liquid. We find that this spin-liquid phase is continuously connected to a previously
discovered spin-liquid phase of the isotropic J1−J2 model. The two limits show nearly identical spin
correlations, making the case that their respective spin liquids are isomorphic to each other.

Some of the most visionary ideas prevail despite fail-
ing the original test case they were suggested to de-
scribe. Such is the seminal proposal of a spin liquid (SL)
as a ground state of the nearest-neighbor (NN) S = 1

2
triangular-lattice (TL) Heisenberg antiferromagnet [1].
Although the ground state of this model proved to be
magnetically ordered [2, 3], the concept of spin liquid re-
mains highly influential in a much broader context [4, 5].

The recent surge of activity [6–29] brings back the NN
TL model as a potential holy grail of spin liquids that
may provide a redemption to the original proposal of
Ref. [1]. In its modern reincarnation, the key players
are the highly anisotropic spin interactions, borne out of
the strong spin-orbit coupling [6, 8, 25]. This ongoing
effort is also inspired by the Kitaev SL construct for the
honeycomb lattice [30], although without the benefit of
an exact solution in the TL geometry.

The highly anisotropic interactions in the rare-earth
compounds naturally emerge from a projection of the
large magnetic moments onto the low-energy pseudospin-
1
2 degrees of freedom [31]. Among the recently discovered
TL rare-earth-based magnets, YbMgGaO4 (YMGO) [6]
received most attention. While the debate on the in-
trinsic vs disorder-induced nature of its spin-liquid-like
response is ongoing [7, 16, 26–28], a broader family of
the TL rare-earth materials has become available [8, 29].

Thus, it is important to provide a much needed frame-
work to this area by establishing the phase diagram of
the most general NN TL model with an unbiased numer-
ical approach that goes beyond the mean-field methods
that favor SL by design [7, 11]. That should also settle
whether extrinsic mechanisms are at work to mimic an
SL behavior in the cases such as YMGO [16].

In this Letter, we explore the three-dimensional (3D)
phase diagram of the most general NN model of these
materials by using the density-matrix renormalization
group (DMRG) aided by quasiclassical analysis. In agree-
ment with prior numerical work [16, 17, 25], we find that
the phase diagram is dominated by well-ordered states
and shows no indication that anisotropic terms by them-
selves can lead to a massive degeneracy that can favor SL
states. On the contrary, most of the phase boundaries are
nearly classical, implying reduced quantum fluctuations

and strongly gapped states. Nonetheless, we have found
a likely candidate for an SL state and created its topo-
graphic map. The maximal extent of the SL phase is
achieved at the isotropic limit of the bond-independent
part of the model, questioning that anisotropies are a
prime source of an SL in these systems.

While the local character of the f -shell magnetism of
the rare-earth ions dictates the dominance of the NN
interactions, experiments suggest a sizable next-NN cou-
pling J2 [12, 24]. We find that a four-dimensional exten-
sion of the phase diagram with J2 allows for a natural
continuity of the SL state from the anisotropic TL to the
isotropic J1–J2 limit [32–41]. The spin-spin correlations
show no transition vs J2 and are nearly identical between
these two limits, suggesting isomorphism of the corre-
sponding SL states. Our study indicates that these SLs
are either Z2 or Dirac-like [25, 34–41], not the “spinon
metal” SL state, argued to exist in YMGO [7, 23].
Model.—The general NN TL model [6, 8] with spin

anisotropies constrained by the TL symmetries has both
XXZ and bond-dependent terms, H=HXXZ +Hbd,

HXXZ = J
∑
〈ij〉

(
Sxi S

x
j + Syi S

y
j + ∆Szi S

z
j

)
,

Hbd =
∑
〈ij〉

2J±±

(
cos ϕ̃α [x, y]ij − sin ϕ̃α {x, y}ij

)
(1)

+ Jz±

(
cos ϕ̃α {y, z}ij − sin ϕ̃α {x, z}ij

)
,

where 0 ≤ ∆ ≤ 1 for layered systems, auxiliary phases
are ϕ̃α={0,−2π/3, 2π/3} for bonds along the primitive
vectors δα in Fig. 1, and notations [a, b]ij =Sai S

a
j −SbiSbj

and {a, b}ij=Sai S
b
j+SbiS

a
j are used for brevity [42].

Classical phase diagram.—The XXZ term in (1) fa-
vors coplanar states: the well-known 120◦ state for ∆≤1
and J >0, and a ferromagnetic state for J <0. The Hbd

terms in (1) are incompatible for different bonds [43],
leave no continuous spin symmetries and select “stripe-
x” and “stripe-yz” as ground states [8, 17]; see Fig. 1.

In the “stripe-x” state, favored by J±±<0, spins align
along one bond in ferromagnetic “stripes” that order an-
tiferromagnetically, see Fig. 1. This structure is only
partially frustrated as the J±± term is fully satisfied on
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FIG. 1: The classical 2D phase diagram of the model (1) for
∆=1.0 using polar parametrization (see inset). The sketches
of the ordered states (see text) and lattice primitive vectors
are shown. Some of the DMRG scans of Figs. 2 and 3 are
shown by arrows. The shaded triangle shows the SL phase.
For the 3D phase diagram and phase boundaries see SM [43]

.

the x-bond and half-satisfied on two other bonds [17, 43].
The “stripe-yz” state benefits the J±±>0 and Jz± terms
in a similar manner. Here spins in ferromagnetic stripes
are perpendicular to the fully satisfied x-bond and are
tilting out of the lattice plane with the angle dependent
on the ratio Jz±/J±±, reaching π/4 at Jz±→∞ [17]. The
boundaries between all phases in Fig. 1 can be found an-
alytically; see the Supplemental Material (SM), Ref. [43].
The results are identical for Jz±<0 [8].

In Fig. 1, we present a two-dimensional (2D) cut of the
classical 3D phase diagram of the NN TL model (1) at
∆=1.0 that shows all four phases discussed above. The
full 3D phase diagram is a solid cylinder with the vertical
axis 0≤∆≤1 and the 2D cuts showing only quantitative
changes vs ∆; see the SM [43]. The polar parametriza-
tion maps the 2D parameter space onto a circle and the
choice of numerical factors is to exaggerate the region
J±±, Jz± . J . In Fig. 1, we also identify an area of the
suspected SL phase discussed below.

DMRG results.—To investigate the 3D phase diagram
of the model (1) by DMRG we use several complemen-
tary approaches. First is the long-cylinder 1D “scans,”
in which one of the parameters is varied along the length
of the cylinder and spin patterns provide a faithful vi-
sual extent of different phases that appear [16, 34, 45].
We use different boundary conditions and ranges of the
varied parameter to exclude unwanted proximity effects
[43]. Second are the shorter cylinders [46] with fixed pa-
rameters [“non-scans”] used as a probe for a sequence of
points along the same 1D scans or at individual points
of the phase diagram. Third is the 1/L scaling of the or-
dered moment using clusters with fixed aspect ratio [3].
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FIG. 2: The 2D phase diagrams for ∆ = 0.5 and 1.0. The
circles are from the 1D DMRG scans, see text and Fig. 3,
squares are ED results [17], solid lines are guides to the eye,
dashed lines are classical phase boundaries, arrows show pa-
rameter cuts for the insets. Insets show 〈S〉 vs J±± (Jz±) in
units of J from cylinders with fixed parameters [46]. Stars
are parameters used in 1/L scaling in Fig. 3(c), see text.

We also use measurements of the correlation lengths and
intensity maps of the structure factor, S(q) [43].

Figs. 2 and 3 present our key results; see the SM [43] for
details. In Fig. 2 we show 2D phase diagrams for ∆=0.5
and 1.0, focusing on the region around the 120◦ phase.
The circles with error bars are transitions observed in
the scans, such as the ones shown in Figs. 3(a) and (b);
squares in Fig. 2(a) are the exact-diagonalization (ED)
results from Ref. [17]; solid lines are guides to the eye.

Our scans for ∆ = 0.5 in Fig. 2(a) and the ED are re-
markably close, both showing direct transitions between
robust magnetic orders that are nearly coincident with
the classical phase boundaries (dashed lines). The non-
scan ordered moments, shown in the insets of Fig. 2 along
two representative cuts, support these findings.

Fig. 2(b) summarizes our results for the isotropic limit
of the XXZ term (1), ∆=1.0. We find an expansion of
the 120◦ phase beyond its classical boundaries with the
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FIG. 3: The 1D DMRG scans [46] for (a) ∆ = 0.5, J±± = 0
vs Jz±, and (b) ∆ = 1.0, Jz± = 0.3 vs J±± [J±±, Jz± in
units of J ]. The circles and lines show transitions, arrows are
the in-plane projections of 〈S〉. (c) The 1/L scaling of 〈S〉
for parameters marked with stars in Fig. 2(b). Insets show
∆-dependencies of the extrapolated 〈S〉∞.

transitions from it to the stripe phases remaining direct
for Jz± . 0.25 [43]; see inset in Fig. 2(a). Here we find
a possible SL state in the Jz±' [0.27, 0.45] window; see
also Fig. 3(b) and SM [43].

The inset of Fig. 2(b) presents the non-scan ordered
moment 〈S〉 along the Jz± cut. It shows a kink-like fea-
ture at Jz±≈0.28 for ∆=1.0. However, the intermediate
phase from Jz±≈0.28 to 0.38 still exhibits a weak order.
The same plot shows a similar feature for ∆ = 0.8 from
Jz±≈ 0.35 to 0.38 while for ∆ = 0.5 the transition is di-
rect. The scans for ∆ = 0.8 show the SL-suspect region
that is significantly smaller than for ∆ = 1.0 [43]. We
note that all transitions to stripe states that we observe
are first-order like.

Another test of the SL region is provided by the 1/L
scaling of the ordered moment 〈S〉 [3] in Fig. 3(c) for
representative points indicated by the stars in Fig. 2(b).
The insets of Fig. 3(c) show the ∆-dependence of the
extrapolated moment 〈S〉∞. This analysis suggests an
SL state in a significantly smaller 3D region than the
long-cylinder scans. Its approximate extent in ∆ = 1.0
plane is shown in Fig. 2(b) by the dashed oval and it is
limited along the XXZ axis by ∆&0.9.

This should be compared with the J1–J2 model, where
different methods used here agree very closely on the ex-
tent of the SL region [16, 34, 43]. This is not the case in
the present study, suggesting that a weak and/or more
complicated form ordering [9] may persist in much of the
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FIG. 4: Topographic maps of the SL regions of the 3D phase
diagrams of the NN (J2 =0) model (1) [back panel] and of the
J1–J2–J±± (Jz±= 0) XXZ model [16] [lower panel]. ∆-cuts
are given in 0.2 increments and indicated. Dashed arrows
show 1D DMRG cuts in Fig. 5.

suspected SL region.

We summarize the 3D quantum phase diagram for the
model (1) in the back panel of Fig. 4 as a topographic
map. It retains all classical phases of Fig. 1 and ac-
quires an SL region. The generous outline of the latter
represents a distorted cone-like shape with the base at
∆ = 1.0 and the widest dimensions Jz± ' [0.27, 0.45]
and J±±' [−0.17, 0.1] at that base. The tip of the cone
extends along the XXZ axis down to ∆&0.7. As is dis-
cussed above, the actual SL region may be significantly
smaller. We also note that the SL phase occurs within
the 120◦ region and its maximal extent is achieved at the
isotropic limit of the XXZ term, questioning the impor-
tance of anisotropies for its existence.

J2–extension.—Some of the most reliable experiments
in YMGO strongly suggest that one should add a second-
NN J2-term to the NN model (1) [12, 24]. The isotropic
J1–J2 model is also known to have an SL state for a
range of J2 ≈ [0.06, 0.16]J1 [33–41]. For both reasons,
a minimalistic modification of the NN model (1) by the
XXZ-only next-NN J2-term suffices [43].

Recently, we have investigated the effect of the XXZ
and J±± anisotropic terms on the J1–J2 SL phase [16]. It
survives down to ∆≈0.3 and is eliminated completely by
|J±±|≈0.1. In the bottom panel of Fig. 4, we present a
topographic map of the SL state in this XXZ J1–J2–J±±
(Jz±=0) model using results from Ref. [16].

Fig. 4 suggests of a connection between the SL phases
of the anisotropic model (1) and of its isotropic J1–J2
counterpart. We verify this connection for ∆=1.0 where
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the extent of both SL regions in Fig. 4 is maximal. We
use two long-cylinder DMRG scans in the J±±=0 plane
shown in Fig. 4 by arrows. The first scan connects the
anisotropic SL at Jz± = 0.35 with the isotropic J1–J2
SL at J2 = 0.12 (units of J1). The second scan starts
at the origin (J1-only model) and is used to confirm the
existence of an SL state between the 120◦ and the stripe
phases along the direction tilted from the J2 and Jz±
axes. For a different picture of these cuts, see SM [43].

Figs. 5(a) and (b) show the real-space images of these
scans; dashed arrows are marking their crossing point;
both coordinates (Jz±, J2) are indicated. The first cylin-
der has open boundary condition and one site removed
at each end to suppress spinon localization at the edge
[34, 43]. The scan shows no indication of magnetic, chiral,
or valence-bond order [43] and no change of the SL state
along the cylinder, the latter inferred from the thick-
ness of the bonds that are proportional to the nearest-
neighbor correlation 〈SiSj〉. The second scan, Fig. 5(b),
shows a transition from the 120◦ to the stripe-yz state
via an SL state, consistent with the first scan and also
with the results in Figs. 2(b) and 4 and Refs. [16, 43] for
the scans along Jz± and J2 axes.

To infer the character of the SL states, we calculate
the static structure factor, S(q), using correlations from
the three section of the cylinder in Fig. 5(a) with centers
of these sections marked by the diamonds [47]. The first
section represents the region that is close to the limit
of the original anisotropic model (1), the third section
is close to the isotropic J1–J2 SL, and the second is in

between. The results are shown in Fig. 5(c) where S(q)
is at qz = 0 [48]. We have also calculated S(q) in non-
scan cylinders for the limits of the scan in Fig. 5(a) as
well as at other points within the SL regions in Fig. 4
with quantitatively very similar results [43].

The structure factors in Fig. 5(c) are nearly identical,
implying that the SLs in the anisotropic model (1) and in
the isotropic J1–J2 model, as well as any SL state in be-
tween, are isomorphic to each other [49]. The correlations
show a broadened peak at the K-points, the feature con-
sistent with the Z2 [34–36], U(1) Dirac [37], or Dirac-like
[25, 38–41] SLs, but not with the spinon Fermi surface
SL state proposed for YMGO [7, 23]. This suggests that
an extrinsic mechanism is responsible for an SL-like re-
sponse in this material. The YMGO structure factor has
maxima of intensity at the M -points, the feature readily
obtainable from stripe domains of mixed orientations, see
[43], supporting the SL mimicry scenario of Ref. [16].

Summary.—We have explored the 3D phase diagram
of the anisotropic NN model (1) on an ideal TL lattice us-
ing DMRG. We have identified an SL region of the phase
diagram and created its topographic map. This SL state
occurs at the border between 120◦ and stripe phases, with
its maximal extent reached at the isotropic limit of the
XXZ term. We have studied a four-dimensional exten-
sion of the phase diagram by the next-NN J2-term and
have shown that it connects the newly found SL state to
the well-known isotropic J1–J2 model. The spin-spin cor-
relations are nearly identical everywhere between these
two limits, suggesting a complete isomorphism of the cor-
responding SL states. This also rules out the “spinon
metal” SL state as a viable candidate for materials that
realize anisotropic TL model.
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[21] S. Tóth, K. Rolfs, A. R. Wildes, and C. Rüegg,
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