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We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free
energy using Nyquist’s instability criterion. In contrast to typically employed threshold models which
consider a single free-energy source, this method includes the effects of proton and He2+ temperature
anisotropy with respect to the background magnetic field as well as relative drifts between the
proton core, proton beam, and He2+ components on stability. Of 309 randomly selected spectra
from the Wind spacecraft, 53.7% are unstable when the ion components are modeled as drifting
bi-Maxwellians; only 4.5% of the spectra are unstable to long-wavelength instabilities. A majority of
the instabilities occur for spectra where a proton beam is resolved. Nearly all observed instabilities
have growth rates γ slower than instrumental and ion-kinetic-scale timescales. Unstable spectra are
associated with relatively-large He2+ drift speeds and/or a departure of the core proton temperature
from isotropy; other parametric dependencies of unstable spectra are also identified.

Introduction.— Plasma instabilities, wave-particle in-
teractions driven by departures from local thermody-
namic equilibrium, influence the dynamics of nearly col-
lisionless systems, including those frequently encoun-
tered in space and astrophysical contexts. In order to
transfer free energy from plasma particles to electromag-
netic fields and drive unstable growth, non-equilibrium
attributes— including anisotropic temperatures relative
to the local mean magnetic field, relative drifts between
component distributions, and more general agyrotropic
features— must either contribute to sufficiently large de-
partures from equilibrium or enable a resonant interac-
tion between fields and velocity-space structure in the
particle distribution. The determination of these condi-
tions is complicated in systems with many sources of free
energy.

The large number of in situ observations of the
solar wind, a nearly-collisionless, low-density, high-
temperature plasma emanating from the Sun’s surface,
enables the statistical study of plasma processes, includ-
ing instabilities. Typical instability studies focus on what
unstable modes may arise due to a single free-energy
source in a reduced parameter space. As an example,
the departure of the proton temperature ratio T⊥p/T‖p

from isotropy, where ⊥ and ‖ are defined with respect
to the mean magnetic field B, can drive Alfvén ion
cyclotron[1, 2], mirror[3–5], parallel firehose[6, 7], Alfvén
(or oblique) firehose[8], or CGL (or long-wavelength)
firehose[9] instabilities. Similar instabilities arise for elec-
tron and minor ion temperature anisotropies, and other
instabilities arise due to drifts between the distributions.
A recent review of kinetic plasma instabilities can be
found in Yoon 2017[10].

For each kind of unstable mode, one can determine
using linear theory the threshold value of a single pa-
rameter, assuming all other plasma parameters are held
constant, beyond which the fastest growing mode has a

growth rate exceeding some specified value γmin. Varying
a second parameter enables the construction of a stabil-
ity threshold model for each kind of unstable mode for
a single free-energy source[11, 12]. Such models must be
modified for any variation of other plasma parameters,
including minor ion densities or relative drifts between
components, which can suppress or enhance the modeled
instability as well as drive other unstable modes[13–15].

These simple two-parameter models were combined
with decades of observations to demonstrate that the
solar wind’s evolution is bound by long-wavelength in-
stabilities, specifically by the mirror and CGL firehose
thresholds[16–18]. Chen et al. 2016 [19] accounted
for the free energy contribution from protons, electrons,
and He2+ (α) to long-wavelength instability thresholds,
further demonstrating that the solar wind is well con-
strained by these long-wavelength instabilities and that
each plasma species contributes to the stability threshold.
However, such long-wavelength thresholds neglect insta-
bilities arising at kinetic scales, and in the case of the
mirror mode threshold, neglect the effects of relatively
drifting components. Using these methods, the major-
ity of intervals were found to be stable, with only a few
percent classified as unstable.

Instead of focusing on a single free-energy source or
using long-wavelength thresholds which neglect kinetic-
scale instabilities, we identify the presence of any ion-
driven instabilities using a numerical implementation of
Nyquist’s instability criterion[20, 21], which determines
the number of unstable modes supported by a specified
linearized equilibrium via a contour integral. Of a sta-
tistically random set of Wind observations with protons
and alpha particles modeled as a collection of drifting bi-
Maxwellians, 53.7% are found to be unstable. Unstable
modes preferentially arise at parallel ion-kinetic scales
and for spectra with an observed proton beam. Insta-
bilities appear to be pervasive in the solar wind, rather
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than simply serving as a boundary that constrains its
evolution, only acting on a minority of intervals.

Nyquist’s Instability Criterion.— Nyquist’s method de-
termines if any complex frequency solutions [ω, γ](k) to
a dispersion relation |D(ω, γ,k,P)| = 0 have a positive
imaginary component γ > 0 and thus are unstable for a
given wavevector k and other system parameters P [20].
This is achieved by calculating the contour integral of
|D|−1 over the upper half of the complex frequency plane
for fixed values of k and P and counting the number of
enclosed poles via the residue theorem, producing an in-
teger the winding number Wn. If Wn = 0, the system
is stable; if Wn = N , the system supports N unstable
modes. This method, as well as the specific numerical
implementation employed in this work, are described in
more detail in Klein et al. 2017[21]. This method does
not report the kind of mode driven unstable, only if an
unstable mode exists. This calculation can be performed
not just to test for absolute instability, integrating over
the complex half-plane with lower boundary γ = 0, but
for any minimum growth rate, performing a contour in-
tegral with arbitrary lower boundary γ = γmin, yielding
the number of unstable modes with growth rates larger
than γmin, Wn(k,P , γmin).

To apply Nyquist’s method to solar wind observa-
tions, we treat the solar wind as a hot, magnetized
plasma consisting of a collection of drifting bi-Maxwellian
populations. The linear response of this system is
described by the set of parameters P which includes
a normalized density ns/nref , drift speed relative to
the reference distribution vs normalized by the Alfvén
speed vA = B/

√
4πnrefmref , parallel and perpendicular

temperatures defined by T⊥s/T‖s and T‖s/T‖ref, charge
qs/qref and mass ms/mref for each component s, as
well as a reference plasma beta β‖ref = 8πnrefT‖ref/B
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and thermal speed vtref/c =
√

2T‖ref/mrefc2. The lin-
ear dispersion relation |D| for such a system is calcu-
lated as a function of wavevector (k⊥, k‖)ρref normal-
ized to the reference gyroradius ρref = vtref/Ωref us-
ing the PLUME numerical solver[22]. We calculate
Wn(k,P , γmin) by numerical integration of |D|−1 us-
ing the proton core distribution as the reference species
and normalizing our time scales by the proton gyrofre-
quency Ωp = qpB/mpc. For an observed P , we cal-
culate Wn(k,P , γmin) over a log-spaced grid covering
(k⊥, k‖)ρp ∈ [10−2, 101] and define the unstable mode

density as ð(γmin) =
[∫

dkWn(k,P , γmin)
]

/
∫

dk.

Data.—We choose for our analysis a random set of so-
lar wind observations, rather than intervals associated
with signatures for the presence of instabilities[23], se-
lecting the first nominal peak-tracking mode spectrum of
the day measured by the Solar Wind Experiment Fara-
day cup [24] on the Wind spacecraft from 309 days in
2016 and 2017; data from the magnetometer[25, 26] is
used to determine the orientation and amplitude of the

# Spectra # Unstable Mirror CGL FH Kinetic

Total 309 166 14 1 151

p, b, & α 189 130 12 0 118
p & α 114 33 2 1 30
p & b 5 3 0 0 3

p 1 0 0 0 0

TABLE I. Total number, and number of unstable, spectra.
The results are divided between cases with and without re-
solved proton beam and/or α components. The unstable
spectra are further divided into mirror, CGL firehose, and
ion-kinetic-scale instabilities.

magnetic field. For each spectrum, a nonlinear-least-
squares Bi-Maxwellian fit is performed for up to three
ion components— a proton core, proton beam, and α
population— using intelligent initial guesses to find the
simplest physical model that fits the data. The num-
ber of spectra with resolved proton beams and/or an α
population is listed in Table I. While inclusion of elec-
tron free-energy sources may decrease stability at fluid
and kinetic scales [19, 27], the details of the electron
VDF will not significantly inhibit ion-driven instabili-
ties. We treat the electrons as isotropic Maxwellians with
Te = Tp = (2T⊥p + T‖p)/3 and a drift speed necessary to
ensure zero net current.

For spectra without a proton beam population, values
for 7 dimensionless parameters are extracted from Bi-
Maxwellian fits: β‖p, vtp/c, T⊥p/T‖p, T⊥α/T‖α, T‖α/T‖p,
nα/np, and vα/vA. For spectra with a proton beam, 4 ad-
ditional parameters are used: T⊥b/T‖b, T‖b/T‖p, nb/np,
and vb/vA. Mean values of these parameters, given in Ta-
ble II, are consistent with previous statistical studies of
solar wind observations[28], though the inclusion of pro-
ton beams in this work reduces T‖p compared to studies
which assume a single proton population. We calculate
Wn(kρp,P , γmin = 0) as a function of (k⊥, k‖)ρp; ex-
ample winding number distributions and unstable mode
densities ð for three unstable spectra are shown in Fig. 1,
as well as the mean winding number Wn(kρp, γmin = 0)
averaged over all 309 spectra.

Occurrence of Instability— We find that 53.7% of the
randomly selected spectra have ð(γmin = 0) > 0 and
thus support at least one growing mode in (k⊥, k‖)ρp ∈
[10−2, 101]. Considering the spectra with (without) a
proton beam, 70.0% (28.7%) are unstable; a summary
of the number of unstable modes as a function of the
resolved components is presented in Table I. Fig. 2 il-
lustrates the (β‖p, T⊥p/T‖p) distribution of the 309 spec-
tra; unstable spectra are color-coded by the associated
unstable mode density ð and stable spectra are plotted
in grey. The stability thresholds for proton-temperature
anisotropy-driven instabilities with γmin = 10−3Ωp[12]
are included for context.

The mean winding number Wn(kρp, 0), Fig. 1(c),
shows that most unstable modes arise at parallel



3

β‖p 104vtp/c T⊥p/T‖p T⊥α/T‖α T⊥b/T‖b T‖α/T‖p T‖b/T‖p nα/np nb/np |vα|/vA |vb|/vA

Total 0.60 1.07 1.57 0.96 1.48 10.89 2.72 0.04 0.43 0.31 0.84

Stable 0.50 0.91 1.12 1.03 1.39 5.24 2.35 0.04 0.41 0.16 0.73

Unstable 0.68 1.21 1.96 0.90 1.52 15.74 2.88 0.05 0.44 0.44 0.89

∆Xp,α,b(%) 19.12 13.46 50.59 -21.06 8.45 64.27 20.83 2.61 2.90 61.57 21.84

∆Xp,α(%) 132.53 57.59 -26.77 14.16 — 26.46 — 18.10 — 77.44 —

TABLE II. Mean plasma parameters for the 309 observed spectra (top row), for the stable and unstable spectra (second and
third), and the normalized difference of the parameters ∆X between stable and unstable spectra (fourth and fifth).
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FIG. 1. (a,b,d) The number of unstable modes with γmin > 0
as a function of wavevector kρp for three example spectra. (c)
The mean winding number averaged over the 309 observed
spectra.
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FIG. 2. The (β‖p, T⊥p/T‖p) distribution of the observed spec-
tra; color indicates the unstable mode density ð, and grey
indicates a stable spectrum.

wavevectors near ion kinetic scales (k⊥ρp < k‖ρp . 1)
though there exist a finite number of unstable modes at
long wavelengths and/or at more oblique wavevectors.
The abrupt cutoff of Wn beyond kρp ≈ 1 is due to our
model’s lack of electron free-energy sources, which are

necessary to drive instabilities between ion and electron
kinetic scales.

To determine what kinds of instabilities arise for a
given spectrum, we inspect Wn(kρp,P , 0) for the 166
unstable spectra. For the mirror instability, the long-
wavelength threshold[29] can not be simply applied, as
it does not account for the effects of relative drift be-
tween distributions. Instead, we identified 14 spectra
that have unstable modes with |kρp| extending from long-
wavelengths up to the proton gyroscale covering oblique
angles, k⊥ > k‖. These intervals are classified as mir-
ror unstable; an example of such a spectrum is found in
Fig. 1(a). For each mirror unstable case, there also ex-
ist kinetic instabilities with k‖ρp . 1, in agreement with
the canonical T⊥p/T‖p > 1 mirror unstable distribution,
(e.g. Fig. 2(c) of Klein et al. 2017[21]). One spec-
trum, not shown, exceeds the long-wavelength CGL fire-
hose threshold[30] and has a winding number distribution
similar to the canonical case (e.g. Fig. 2(f) of Klein et al.
2017), driving unstable modes for nearly all wavevectors
with kρp < 1, one (two) mode(s) for k⊥ > (<)k‖. We
classify the remaining 151 unstable spectra with growing
modes satisfying k⊥ρp < k‖ρp . 1 as kinetic; two ex-
ample Wn distributions for these kinetic cases are shown
in Fig. 1(b) and (d). The instability classification as a
function of resolved ion components is given in Table I.

Using this classification scheme, we repeat our anal-
ysis for a range of minimum growth rates γmin ∈
[10−4, 100]Ωp, shown in Fig. 3. We see that (black line
in Fig. 3(a)) the fraction of unstable spectra decreases
with an increase in γmin, with no spectrum having growth
rates exceeding γ > 0.2Ωp. The number of mirror and
CGL firehose unstable modes (red and blue regions) re-
mains constant with increasing γmin up to 0.1Ωp. Most of
the kinetic instabilities associated with spectra without
proton beams (dark grey) are limited to growth rates less
than 10−2Ωp, while a decreasing fraction of the unstable
spectra with proton beams (light grey) persists to 0.1Ωp.

Instability Timescales— To compare γmin with
timescales other than Ω−1

p , we calculate the fraction
of unstable spectra as a function of four additional
time scales; the advected proton gyroscale timescale
ρp/vSW, the advected proton inertial length timescale
dp/vSW = vA/(ΩpvSW), the Faraday cup measurement
period τWind = 92 s, and τnl = (k0ρp)

−1/3ρp/vA, an es-
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FIG. 3. The fraction of observed spectra supporting unstable modes with growth rate exceeding γmin. (a) The spectra are
divided according to the instability classification presented in the text. (b) The minimum growth rate distribution is re-scaled
by selected timescales τ .

timate for the nonlinear turbulent energy transfer time
at the proton gyroscale k⊥ρp = 1 assuming a critically
balanced cascade of energy[31, 32] from an outer scale
k0ρp = 10−4. For each spectrum, the values for these
timescales are calculated and the unstable mode den-
sity ð(γmin/Ωp) is interpolated onto a log-spaced grid
for ð(γminτ). This distribution is averaged over the 309
spectra to calculate the fraction of unstable spectra as a
function of τ , shown in Fig. 3(b).

The unstable modes typically have growth rates slower
than ion-kinetic timescales. Nearly all unstable spectra
have growth rates slower than a hundredth of ρp/vSW or
dp/vSW, indicating any growing ion-kinetic-scale struc-
ture associated with instabilities will be static in the
spacecraft frame. As nearly all unstable spectra have
growth rates slower than 92s the nominal spectra selected
for this work are in steady state with respect to any in-
stability induced evolution. Less than 10% of the spectra
have growth rates faster than τnl, indicating that only a
small fraction of the instabilities act quickly enough to
compete with ion-scale damping processes.

Parametric Dependence.—We wish to determine any
relation between a velocity distribution’s bulk parame-
ters and its stability. Given the high-dimensionality of
the parameter space — 3 + 4(Nion − 1) values for Nion

resolved ion components— it is difficult to determine the
relative importance of a given parameter; previous at-
tempts typically focused on the effects of a handful of
parameters, e.g. β‖p and T⊥,p/T‖,p. To ascertain any
relation, we calculate the normalized difference

∆X ≡ X̄unstable − X̄stable

X̄total

(1)

with X drawn from the ion bulk parameters; X̄total,
X̄unstable and X̄stable are the mean value of X averaged
over all spectra, over the unstable spectra, and over the

stable spectra, with stability determined using γmin = 0.
Selection of larger γmin/Ωp does not qualitatively alter
these results. We calculate ∆X using two disjoint sub-
sets of data; spectra with a resolved alpha distribution
and proton core, or spectra with all three ion components
resolved. Values of ∆X are presented in Table II.

Unstable spectra both without and with proton beams
have higher mean alpha drift velocities vα/vA than stable
spectra, indicating that the free energy associated with
the larger relative drift between the protons and alphas is
important in driving instabilities. The mean core proton
temperature anisotropy T⊥p/T‖p for unstable spectra is
significantly decreased (increased) from isotropy for cases
without (with) a proton beam. This reduction of temper-
ature anisotropy is potentially due to the beam having
relaxed into the proton core, leading to an increased T‖p.

For the no-proton-beam case, β‖p is significantly larger
for the unstable spectra, with a 132% increase compared
to stable spectra. The normalized core proton thermal
speed vtp/c, our dimensionless proxy for the parallel core
proton temperature, is also significantly larger. Com-
bined with the normalized difference ∆|vα|/vA, this in-
dicates that parallel free energy is important for driving
these systems unstable.

For spectra with proton beams, T‖α/T‖p is increased
for unstable spectra. The proton beam is also slightly
hotter while the alpha temperature anisotropy T⊥α/T‖α

is slightly decreased. The values of the other proton beam
parameters are only marginally increased for unstable
spectra.

Effects of Uncertainty— To consider the robustness of
this method against measurement uncertainty, we follow
Klein et al. 2017[21] and repeat our instability analysis
on an ensemble of 100 Monte Carlo variations of P for
each of the 309 observed spectra. Each observed dimen-
sional quantity from which P is composed is replaced by a
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Gaussian-distributed random variable with a mean of the
original quantity and a standard deviation of 10%. The
width of the random variable distribution is motivated by
measurement uncertainties found for instance by Kasper
et al. 2006[33]. For these 31,209 values of P , 56.0% are
unstable, qualitatively similar to 53.7% calculated from
the observed spectra. For the ensembles corresponding
to stable observations, P(ð0 = 0), an average of 83.6%
of the elements are stable; for P(ð0 6= 0), an average of
90.5% are unstable. Of the ð0 6= 0 ensembles, 0.6% have
a majority of their elements stable, while 8.3% of the
ð0 = 0 ensembles are majority unstable.

In addition to measurement uncertainty, our results
may be affected by unresolved proton beams with small
nb/np or vb/vA, or by the assumption of bi-Maxwellian
distributions[34, 35]. Repeating this work with a disper-
sion relation which neglects analytic forms and captures
non-Maxwellian features[36] will enable more accurate
determination of solar wind stability.

Conclusions.—We assess the stability of 309 randomly
selected solar wind spectra with ion components modeled
as a collection of drifting bi-Maxwellians using Nyquist’s
instability criterion and find 53.7% are unstable. This
mode-agnostic method includes the effects of ion drifts
and temperature anisotropies, contrasting with previ-
ously employed threshold models that identify only a
small fraction of solar wind intervals as unstable. This
method identifies the same instabilities as traditional
Vlasov studies, but does not require a priori knowledge of
which linear modes are unstable, allowing for automated
analysis. The unstable modes identified using Nyquist’s
criterion are primarily kinetic, with k⊥ρp < k‖ρp . 1;
only 4.5% of the observed spectra have long-wavelength
instabilities. The maximum growth rate for these un-
stable modes is slower than measurement and ion-kinetic
timescales. The mean alpha drift speed for unstable spec-
tra is larger than for stable spectra, and the ratio T⊥p/T‖p

for unstable spectra is further from isotropy. The major-
ity of the unstable spectra have a resolved proton beam
component.

Further study is needed to assess the effects of this pro-
fusion of instabilities. While a majority of observed spec-
tra are unstable, it remains unclear from this initial study
if all the inferred instabilities are dynamically important,
or simply a biproduct of other processes. The resonant
instabilities which comprise the majority of the unsta-
ble spectra do not act as efficiently as long-wavelength
instabilities to return the plasma toward isotropy and
therefore may not constrain the dynamics of the solar
wind’s evolution. This may be an effect of slower growth
rates, smaller regions of wavevector space being driven
unstable, or departures from the assumed bi-Maxwellian
distribution affecting resonance conditions.

One way to discern if these instabilities are are con-
tinuously generated or a remnant of processes in the
near-Sun environment, and how their role in solar wind

dynamics changes at varying distances from the Sun,
will be to combine this automated instability detection
method with forthcoming measurements from Parker So-
lar Probe[37] and Solar Orbiter[38].
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