
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Exact Solutions for Nonlinear Development of a Kelvin-
Helmholtz Instability for the Counterflow of Superfluid and

Normal Components of Helium II
Pavel M. Lushnikov and Nikolay M. Zubarev

Phys. Rev. Lett. 120, 204504 — Published 17 May 2018
DOI: 10.1103/PhysRevLett.120.204504

http://dx.doi.org/10.1103/PhysRevLett.120.204504


Exact solutions for nonlinear development of Kelvin-Helmholtz instability for
counterflow of superfluid and normal components of Helium II

Pavel M. Lushnikov1, 2, ∗ and Nikolay M. Zubarev3, 4, †

1Department on Mathematics and Statistics, University of New Mexico, New Mexico 87131, USA
2Landau Institute for Theoretical Physics, 2 Kosygin St., Moscow 119334, Russia

3Institute for Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620016 Russia
4Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991 Russia

(Dated: March 13, 2018)

A relative motion of the normal and superfluid components of Helium II results in quantum
Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and
exact growing solutions for the nonlinear stage of the development of that instability. Contrary to
the usual KHI of the interface between two classical fluids, the dynamics of Helium II free surface
allows reduction to the Laplace growth equation which has an infinite number of exact solutions
including the generic formation of sharp cusps at the free surface in a finite time.
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FIG. 1: (Color online) A schematic of counterflow in super-
fluid 4He. Heater results in the flux of heat Q which is car-
ried by the normal fluid component with velocity vn while
superfluid component moves in the opposite direction with
the velocity vs. Both components coexist in the same volume
of fluid and share the same free surface.

Kelvin-Helmholtz instability (KHI) is perhaps the
most important hydrodynamic instability which com-
monly occurs either at the interface between two fluids
moving with different velocities or in the presence of the
tangential velocity jump/shear flow in the same fluid [1].
Recently KHI attracted significant experimental and the-
oretical attention in superfluids. KHI was studied either
for interface between different phases of 3He [2–6], which
has many similarities with KHI in classical fluids, or KHI
from relative motion of components of 4He [7–11] which
has no classical analog thus we refer to it as quantum
KHI. We focus on the second case, i.e. on quantum KHI
of the free surface of 4He in the superfluid phase (He-II
state) in the presence of counterflow of superfluid and
normal fluid components [12, 13]. Principle difference
here from KHI of classical fluids is that relative fluid mo-
tion in quantum KHI occurs not from different sides of
interface but from the same side of the He-II free sur-
face with fluids components coexisting in the same vol-
ume which is purely quantum effect. A counterflow is
achieved in experiment by the action of a stationary heat
flow within the liquid in the direction tangent to the free
surface as shown in Fig. 1.

Linear analysis of both classical KHI and quantum
KHI results in the exponential growth of surface pertur-
bations [1, 12, 13]. As these initial perturbations reach
amplitudes comparable with their wavelength, nonlinear

effects must be considered. Weak nonlinearity approx-
imation takes into account the leading order nonlinear
correction over the small parameter which is the typi-
cal slope of surface. Weakly nonlinear equations for de-
velopment of KHI of classical fluids results in a finite
time singularity [14] which means that solutions become
strongly nonlinear beyond the perturbation theory. Two-
dimensional (2D) dynamics of interface between two flu-
ids in weak nonlinearity approximation can be reduced to
the motion of complex singularities through the analyt-
ical continuation into complex plane from the interface
[15, 16]. Approach of singularity to the interface always
means a formation of its geometric singularity. Other
examples of analysis of weakly nonlinear 2D dynamics
through motion of singularities include the interface be-
tween ideal fluid and light highly viscous fluid [17], and
vortex sheet in ideal fluid [18]. Extending weakly non-
linear solutions into strongly nonlinear solution is chal-
lenging and mostly was done for the particular case of
free surface hydrodynamics (i.e. the density of the sec-
ond fluid turns into zero) [19–24] including drops pin-
choff [25, 26]. Another exception is the ideal fluid pushed
through viscous fluid in a narrow gap between two paral-
lel plates (Hele-Shaw flow) which can be approximately
reduced to the Laplace growth equation (LGE) admitting
an infinite set of exact solutions [27–32].

We use a key property of quantum KHI that both fluid
components share the same volume. It allows to find
the exact strongly nonlinear solutions and moreover, gen-
eral integrability of growing solutions. This is achieved
through the exact reduction of quantum KHI dynamics
to LGE for arbitrary level of nonlinearity. These new
solutions, in particular, describe the formation of cusps
(dimples) on the He-II free surface in a finite time with
both a surface curvature and velocities of components of
He-II diverging at singular points. We expect that these
singularities will be possible to observe in He-II experi-
ment which is different from weaker singularities of the
Moore’s type (were identified from approximate analysis
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in Refs. [15, 16, 18]) and predicts smooth surface with
jump only in second derivative. LGE is integrable in
a sense of the existence of infinite number of integrals
of motion and relation to the dispersionless limit of the
integrable Toda hierarchy [33]. We suggest that the ob-
tained reduction of quantum KHI to LGE is important
to the general problem of integrability of surface dynam-
ics [34]. It provides a very rare example of integrable
physical system.

Superfluid component of He-II necessary has quantized
vortices if counterflow velocity exceeds several mm/s
with their density growing with that velocity [35]. Here
we consider the dynamics of He-II at macroscopic scale
where we can average over vortices. We neglect average
vorticity from such averaging as well as ignore vortic-
ity of normal component similar to Ref. [12, 13] which
refers to that approximation as non-dissipative two-fluid
description. In that approximation the dynamics of both
fluid components is potential one, i.e. vs = ∇Φs and
vn = ∇Φn, where vs, vn are velocities of superfluid
and normal components with Φs and Φn being the corre-
sponding velocity potentials. We assume that both com-
ponents are incompressible with densities ρs ≡ const,
ρn ≡ const and the total density ρ ≡ ρs + ρn. In-
compressibility implies Laplace equation for each com-
ponent, ∇2Φn,s = 0. We focus on 2D flow r ≡ (x, y),
where x and y are horizontal and vertical coordinates,
respectively. We assume that both fluids occupy the re-
gion −∞ < y ≤ η(x, t), where y = η(x, t) is the free
surface elevation with the unperturbed surface given by
η(x, t) ≡ 0. The flow of both components deep inside He-
II (y → −∞) as well as at |x| → ∞ is assumed to be uni-
form following x direction, which implies Φn,s → Vn,s x,
where Vn,s are the corresponding horizontal velocities.
We use the reference frame of the center of mass such
that ρnVn + ρsVs = 0 and introduce the relative velocity
V = Vs−Vn > 0 between fluid components meaning that
Vn,s = ∓ρs,nV/ρ.

The dynamic boundary condition (BC) at the free sur-
face (y = η) follows from the generalization of Bernoulli
Eq. into two fluid components, see e.g. Chap. 140 of
Ref. [1] and Refs. [12, 13])

ρn

(
∂Φn
∂t

+
(∇Φn)2

2

)
+ ρs

(
∂Φs
∂t

+
(∇Φs)

2

2

)∣∣∣∣
y=η

= Γ− Pα − Pg, (1)

where Pα = −α ∂
∂x [ηx(1+η2x)−1/2] is the pressure jump at

the free surface due to the surface tension α (the pressure
is zero outside the fluid assuming that there is a vacuum
there), ηx ≡ ∂η/∂x, Pg = ρgη is the gravity pressure
(the contribution of the acceleration due to gravity g)
and Γ = ρnρsV

2/(2ρ) is the Bernoulli constant which
ensures that Eq. (1) is satisfied at |x| → ∞.

The kinematic BCs at the free surface are given by

ηt(1 + η2x)−1/2 = ∂nΦn|y=η = ∂nΦs|y=η, (2)

where ηt ≡ ∂η/∂t, ∂n ≡ n · ∇ is the outward normal
derivative to the free surface with n = (−ηx, 1)(1 +
η2x)−1/2. Eqs. (1) and (2) together with ∇2Φn = ∇2Φs =
0 and BC at infinity form a closed set of equations of two-
fluid hydrodynamics for KHI problem.

We introduce the average velocity v = (ρnvn+ρsvs)/ρ
and the auxiliary potentials Φ = (ρnΦn + ρsΦs)/ρ, φ =√
ρnρs(Φn − Φs)/ρ which are linear combinations of Φn

and Φs thus satisfying Laplace equation together with
∇Φ = v. BCs at either y → −∞ or |x| → ∞ are reduced
to

Φ→ 0 and φ→ −V x√ρnρs/ρ. (3)

Eq. (1) turns into

∂Φ

∂t
+

(∇Φ)2

2
+

(∇φ)

2

2
∣∣∣∣∣
y=η

=
c2

2
− Pα + Pg

ρ
, (4)

where c =
√

2Γ/ρ is the constant which has the dimen-
sion of velocity. Eqs. (2) are reduced to

ηt(1 + η2x)−1/2 = ∂nΦ|y=η (5)

and

∂nφ|y=η = 0. (6)

We replace φ by its harmonic conjugate ψ such that
Cauchy-Riemann equations φx = ψy and φy = −ψx are
valid. BC (6) for Laplace Eq.

∇2ψ = 0 (7)

at the free surface reduces to vanishing of tangential
derivatives ∂τψ|y=η = 0 because ∂τψ|y=η = −∂nφ|y=η.
Without the loss of generality we set

ψ|y=η = 0. (8)

BC at either y → −∞ or |x| → ∞ are reduced to

ψ → −V y√ρnρs/ρ = −cy. (9)

If we introduce the stream functions Ψn,s for the com-
ponents of He-II (they satisfy Cauchy-Riemann equa-
tions ∂xΦn,s = ∂yΨn,s and ∂yΦn,s = −∂xΨn,s), then
ψ = (Ψn −Ψs)

√
ρnρs/ρ. ψ is fully determined by η(x, t)

from (8) and (9) while being independent on Φ. Dynamic
BC (4) in terms of Φ and ψ is given by

∂Φ

∂t
+

(∇Φ)2

2
+

(∇ψ)2

2

∣∣∣∣
y=η

=
c2

2
− Pα + Pg

ρ
. (10)

Eqs. (5), (8) and (10) together with ∇2Φ = ∇2ψ = 0
and BCs (3) and (9) at infinity form a closed set of equa-
tions equivalent (through harmonic conjugation) to solv-
ing two-fluid He-II hydrodynamics for KHI problem. It
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is remarkable that this set is equivalent (up to trivial
change of constants) to the problem of 2D dynamics of
charged surface of ideal fluid in the limit when surface
charges fully screen the electric field above the fluid free
surface. This limit was realized experimentally for the
He-II (with negligible ρn) free surface charged by elec-
trons [36]. In that case Φ has the meaning of the only
(ideal) fluid component and ψ represents (up to the mul-
tiplication on constant) the electrostatic potential in the
ideal fluid. The term ∝ (∇ψ)2 in Eq. (10) corresponds
to the electrostatic pressure.

Refs. [37, 38] found exact time-dependent solutions
for this problem of the dynamics of charged surface of
superfluid He-II in the limit of zero surface tension and
gravity as well as for the limit of zero temperature (i.e.
neglecting the normal component of He-II). We apply
that approach for full (nonlinear) KHI problem with fi-
nite temperature. We set α = g = 0 in right-hand side
of Eq. (10). Below we provide estimates of the applica-
bility of such neglect of surface tension and gravity for
two-component dynamics of He-II.

Our goal is to reduce Eqs. (5), (8) and (10) together
with ∇2Φ = ∇2ψ = 0 and BCs (3) and (9) to solving
LGE. Differentiation of Eq. (8) over t and x results in

ηt = −ψt/ψy|y=η, ηx = −ψx/ψy|y=η

respectively. Using these expressions in kinematic BC (5)
rewritten in the equivalent form ηt = Φy − ηxΦx|y=η ,
allows to obtain that

ψt +∇ψ · ∇Φ|y=η = 0. (11)

The sum and difference of Eqs. (10) and (11) (with Pα =
Pg = 0) result in

F
(±)
t ∓ cF (±)

y + (∇F (±))2
∣∣∣
y=η

= 0, (12)

where we introduced the harmonics potentials

F (±) = (Φ± ψ ± cy)/2, (13)

which satisfy the Laplace Eqs.

∇2F (±) = 0, F (±) → 0 for y → −∞ or |x| → ∞. (14)

According to Eqs. (8) and (13), the motion of the free
surface is determined by the implicit expression

cη = F (+) − F (−)|y=η. (15)

Returning to physical Φn,s and Ψn,s, we find that

2ρF (±) = ρnΦn + ρsΦs ±
√
ρnρs (Ψn −Ψs + V y) . (16)

Eqs. (14) together with (12), and (15) is equivalent
to the KHI problem. It is crucial that nonlinear Eqs.
(12) decouple into separate Eqs. for F (+) and F (−).

We note that such decoupling does not occur for the
classical KHI problem (the interface between two flu-
ids) where the velocity potentials and stream functions of
each of two fluids are defined in physically distinct regions
(y < η and y > η) thus making impossible a superposi-
tion of the type (16). (Decoupling is however possible by
other method in small angle approximation with leading
quadratic nonlinearity in perturbation series for classical
KHI [16].)

The full set of equations (12), (14)-(15) is still generally
coupled through Eq. (15). But an additional assumption
(reduction) that either

F (+) = 0 or F (−) = 0 (17)

ensures the closed Eqs. which have a wide family of exact
nontrivial solutions described below. That assumption
remains valid as time evolves. It follows from Eqs. (13)
that (17) ensure the relations between Φn,s and Ψn,s as

∓√ρnρs (Ψn −Ψs + V y) = ρnΦn + ρsΦs.

We look at the physical meaning of our reductions (17),
based on the particular limit of small amplitude surface
waves. We neglect the nonlinear term in Eqs. (12) re-
sulting in the linear system which we solve in the form
of plane waves

F (±) = a(±) exp(ikx+ ky − iω(±)t), η = b(+)

× exp(ikx− iω(+)t) + b(−) exp(ikx− iω(−)t),
(18)

where a(±) and b(±) are small constants, ω(±) are fre-
quencies and k is the wavenumber. First Eq. in (18)
ensures the exact solution of Eqs. (14) with decaying
BCs at y → −∞. Substitution of (18) into Eq. (15) and
the linearization of (12) results in the relations

ω(±) = ±ick, cb(±) = ±a(±). (19)

which are two branches of the dispersion relation of KHI
with g = α = 0 [1, 12, 13]. Superscripts “+” and “−”
correspond to exponentially growing and decaying per-
turbations of the flat free surface, respectively. Eqs. (17)
choose one of these two branches. Thus Eqs. (12), (14)-
(15) together with (17) represent the fully nonlinear stage
of such separation into two branches.

The generic initial conditions include both unstable
and stable part (18) with the unstable part dominates
as time evolves. Also it was shown in Refs. [38, 39] that
small perturbation of F (−) on the background of large
F (+) decays to zero. Thus the choice of the reduction
F (−) = 0 (which is assumed below) in Eq. (17) is the
natural one to address the nonlinear stage of KHI. Then
Eqs. (13) imply that F (+) = Φ = ψ + cy, i.e. Φ is
determined by ψ. The boundary value problem (BVP)
(7)-(9) solves for ψ at each t. The motion of the free
surface is determined by Eq. (5) as

(ηt − c)(1 + η2x)−1/2 = ∂nψ|y=η . (20)
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To solve BVP (7)-(9) we consider the conformal map z =
z(w, t) [40] from the lower complex half-plane −∞ < v ≤
0, −∞ < u < +∞ of the complex variable w = u + iv
into the area −∞ < y ≤ η(x, t) occupied by the fluid in
the physical plane z = x + iy with the real line v = 0
mapped into fluid free surface. Then the free surface is
given in the parametric form y = Y (u, t) ≡ Im z(u, t)
and x = X(u, t) ≡ Re z(u, t). Solutions of both BVP
(7)-(9) and the harmonically conjugated BVP ∇2φ = 0,
(3), (6) in (u, v) variables are given by φ+ iψ = −c(u+
iv). It means that the conformal variables u and v have
a simple physical meaning: u = −φ/c and v = −ψ/c
corresponding (up to multipication to the constant −1/c)
to the harmonically conjugated potentials φ and ψ.

We consider w as independent variable while z(w, t)
as the unknown function. Eq. (20) is given by YtXu −
YuXt = cXu − c, which can be rewritten as

Im
(
ḠtGu

)
= c. (21)

where G(u, t) = z(u, t)− ict. Eq. (21) has the exact form
of LGE which has the infinite number of exact solutions
often involving logarithms (see e.g. Refs.[29–32]). We
look at a periodic solution [31] with the wavenumber k,

z = w − ikA2(t)/2− iA(t) exp[−ikw], (22)

where A(t) is the amplitude of the free surface surface
perturbation satisfying a nonlinear ordinary differential

equation dA/dt = ckA
(
1− k2A2

)−1
which develops a

finite-time singularity in dA/dt at the time t = tc with
A(tc) = 1/k. As t approaches tc, a leading order solution
is given by A = 1/k −

√
cτ/k + O(τ), where τ = tc − t.

Singularities of the conformal map (22) are determined
by a condition zw = 0 implying that they approach the
real line v = 0 from above with the increase of t. That
line is reached at τ = 0 and u = 2πn/k, n = 0,±1,±2, . . .
In particular, choosing n = 0, expanding at u = 0 and
assuming τ → 0 we obtain that

X = u
√
ckτ + k2u3/6 +O(uτ + u3τ1/2),

Y = −3/2k + 2
√
cτ/k + ku2/2 +O(τ + u2τ1/2).

(23)

Fig. 2 shows an example of such solution at different t.
It follows from Eq. (23) that a cusp pointing downward
(a dimple) y+ 3/2k ∝ |x|2/3 is formed at the free surface
at t = tc (i.e. τ = 0) with the vertical velocity diverging
as τ−1/2 at the tip of the cusp [29, 31].

Near the singularity (the tip of the cusp) one has to
take into account the surface tension and the finite vis-
cosity of the normal component to regularize the singu-
larity. Surface tension near the singularity is given by
Pα ≈ α/r, where r is the radius of curvature of the free
surface. It follows from Eq. (23) that r ≈ cτ , which im-
plies that Pα ≈ α/cτ . The dynamic pressure Pv, which
determines the development of KHI in LGE reduction,
is given by Pv = ρv2/2 ≡ ρ

[
(∇Φ)2) + (∇ψ)2

]
/2, where
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FIG. 2: Evolution of an initial periodic perturbation of the
free surface y(x) for Eq. (22) with kA(0) ≈ 0.15. The sur-
face shape is shown over one spatial period for the times
ckt = 0, 0.8, 1.2, 1.4 until the cusp singularity is formed. The
dashed line shows the unperturbed free surface, y ≡ 0.

v is the typical velocity. Near singularity v '
√

2c/kτ
and Pv = ρc/kτ . Thus both Pv and Pα ∝ τ−1. Surface
tension effect is small if the Weber number We = Pv/Pα,
the ratio of dynamic and surface tension pressures, is
well above 1. Using We ≈ ρc2/αk = ρnρsV

2/(ραk),
and assuming We>∼ 1 for applicability of LGE regime,
we obtain the condition for the wavelength λ = 2π/k >∼
2πρα/(ρnρsV

2). He-II at the temperature 1.5 K has ρn =
0.016 g/cm3, ρs = 0.129 g/cm3 and α = 0.332 dyn/cm
[41]. E.g. if V = 15 cm/s then λ >∼ 0.64 cm.

The relative strength of inertial and viscous forces
near the singularity is determined by the Reynolds num-
ber Re = vr/ν, where ν is kinematic viscosity of He-
II. Using that v ≈

√
2c/kτ and r ≈ cτ , implies that

Re ≈ cν−1
√

2r/k, i.e. Re turns small for r → 0 and
viscosity has to be taken into account. A typical scale rν
below which the flow of the normal component cannot be
considered as potential one is estimated by setting Re ≈ 1
which gives rν ≈ kν2/2c2. For the temperature 1.5 K, we
use ν = 9.27 · 10−5 cm2/s [41]. Then rν ≈ 1.8 · 10−10 cm,
i.e. rν � λ thus the viscous effect is much less than the
surface tension. The influence of gravity, which is deter-
mined by the Froude number Fr = Pv/Pg, is small near
the singularity because the gravity pressure Pg ' ρgy is
finite while Pv diverges as τ−1 implying divergence of Fr.

We conclude that we reduced fully nonlinear quantum
KHI dynamics to LGE which has the infinite set of exact
solutions with the generic formation of cusps at the free
surface in a finite time. The key is the exact transform
from two-fluid description into the effective single-fluid
description of Eq. (10). It suggests a roadmap for effi-
cient use of conformal map to include gravity and cap-
illarity into dynamics. Adding capillarity would ensure
singularity regularization at small spatial scales. Confor-
mal map can be used for electro-hydrodynamic instabil-
ity [36, 39] and Faraday waves [42] of He-II. Viscosity can
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be taken into account through conformal map in Stokes
flow regime of normal component which would go beyond
weakly nonlinear result [17].

Free surface represents vortex sheet which results in
the additional generation of quantized vortices at the
nonlinear stage of KHI. It is expected to push quantum
turbulence states T1 towards T2/T3 states [35].
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