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Centrifugal buoyancy affects all rotating turbulent convection phenomena, but is conventionally
ignored in rotating convection studies. Here, we include centrifugal buoyancy to investigate what we
call Coriolis-centrifugal convection (C3), characterizing two so far unexplored regimes, one where the
flow is in quasi-cyclostrophic balance (QC regime) and another where the flow is in a triple balance
between pressure gradient, Coriolis and centrifugal buoyancy forces (CC regime). The transition to
centrifugally dominated dynamics occurs when the Froude number Fr equals the radius-to-height
aspect ratio γ. Hence, turbulent convection experiments with small γ may encounter centrifugal
effects at lower Fr than traditionally expected. Further, we show analytically that the direct effect
of centrifugal buoyancy yields a reduction of the Nusselt number Nu. However, indirectly, it can
cause a simultaneous increase of the viscous dissipation and thereby Nu through a change of the
flow morphology. These direct and indirect effects yield a net Nu suppression in the CC regime,
and a net Nu enhancement in the QC regime. In addition, we demonstrate, that C3 may provide a
simplified, yet self-consistent, model system for tornadoes, hurricanes and typhoons.

PACS numbers: 47.27.te, 47.32.Ef, 47.55.P-

Rotating turbulent thermal convection is the funda-
mental process underlying a vast variety of geo- and as-
trophysical flow phenomena, including deep ocean con-
vection, planetary atmospheric flows, and liquid metal
core dynamics. Rotating Rayleigh–Bénard convection
(RRBC) serves as the paradigm model system; it con-
stitutes a fluid heated from below and cooled from above
that is rotated about its vertical axis. Hence, the prin-
cipal external forces governing the equations of motions
are the Coriolis, gravitational and centrifugal buoyancy
forces [1, 2]. Traditionally, centrifugal buoyancy is dis-
regarded in RRBC studies [3], based on the claim that
it is negligible in natural settings. Exceptions exist but
are mainly concerned with the onset properties [2, 4–8,
cf. 9], or stably stratified systems [10].

Here, we argue that centrifugal buoyancy warrants in-
clusion because, like gravity, it drives convective motions:
Cold, denser fluid moves radially away from the axis of ro-
tation and warm, less dense fluid moves radially towards
it. Further, it breaks the symmetry of the system and
thereby changes the range of potential behaviors. Study-
ing Coriolis-centrifugal convection (C3) - that is RRBC
with the full inertial acceleration taken into account -
is also exceedingly important for today’s state-of-the-art
experimental devices that aim to characterize geostrophic
turbulence [3, 11]. These experiments must often rotate
slower than their actual technical capabilities in order to
keep the centrifugal buoyancy small. But it is not known
when centrifugal dynamics start to affect important out-
put parameters such as the heat transport and the flow
morphologies, nor in which ways those may be altered.

In this Letter, we predict the uncharted regime tran-
sitions of C3 using scaling arguments and provide ana-
lytical derivations for the heat transport. Our results
are verified and corroborated by direct numerical simu-

lations (DNS), which show a wide range of geophysically
interesting flow behaviors.
The governing equations in non-dimensional form are

the incompressible Navier–Stokes equations augmented
by the temperature equation, viz.

Dtu = −∇p+
√

Pr
Ra γ3∇

2
u+

√
Pr γ

RaEk2u× êz (1a)

+T êz − Fr T r êr, ∇ · u = 0,

DtT =
√

1
RaPr γ3∇

2T. (1b)

The temperature T is scaled by the imposed adverse
temperature difference ∆; lengths by the radius of the
convection vessel R; velocity u by

√
gαR∆, where α

denotes the isobaric expansion coefficient and g is the
gravitational acceleration; time t by R/

√
gαR∆ and re-

duced pressure p by ρgαR∆ where ρ is the mean den-
sity. The sidewall is insulated, and the top and bottom
are isothermal with Ttop = −0.5 and Tbot = 0.5, respec-
tively. The velocity boundary conditions are no-slip on
all walls. The non-dimensional control parameters are
the Rayleigh number Ra = αg∆H3/(κν), Prandtl num-
ber Pr = ν/κ, Ekman number Ek = ν/(2ΩH2), Froude
number Fr = Ω2R/g, and aspect ratio γ = R/H , where
κ is the thermal diffusivity, ν is the kinematic viscosity,
Ω the rotation rate, and H is the height of the vessel.
Eqs. (1) are solved numerically in cylindrical coordi-

nates (r, φ, z) using the fourth order finite volume code
goldfish [12]. In our DNS we can independently vary

Fr and the gravitational Rossby number Ro‖ ≡
√

Ek2Ra
Pr

and even set them to 0 or ∞, respectively, while the
other remains finite. This numerical flexibility, which
is essential to map out the broadest possible parameter
space, does not exist in the laboratory, where Fr and Ro‖
must co-vary. A total number of 160 DNS are presented
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FIG. 1. Flow fields for Ra = 108, Pr = 6.52, γ = 0.365: (a–d)
temperature T , (e–h) side and top view of the velocity vectors
scaled in size by velocity magnitude and colored by azimuthal
velocity uφ. (a,e) Ro‖ = ∞, Fr = 2.0 (QC); (b,f) Ro‖ = 1.0,
Fr = 1.0 (QC); (c,g) Ro‖ = 0.05, Fr = 10.0 (QC/CC); (d,h)
Ro‖ = 0.05, Fr = 2.0 (CC). Note that the three rings for (h)
at the top and bottom are located at approximately the same
radial positions. Corresponding movies can be found in the
Supplemental Material.

here, conducted with Pr = 6.52, Ra = 107 and 108,
0.0125 ≤ Ro‖ ≤ ∞, 0 ≤ Fr ≤ 10 in a cylindrical tank
with γ = 0.365, and a small subset with γ = 1.5 [13].
Fig. 1 shows characteristic flow fields for the investigated
parameter space. (See the movies and Fig. 4 in the Sup-
plemental Material for a broader array of visualizations.)

We first determine when fundamental changes in the
dynamics occur in the C3 system based on time scale
arguments. Relevant are the Coriolis time scale, τΩ =
1/(2Ω), the gravitational buoyancy (free-fall) time scale,
τff = H/

√
α∆gH , and the centrifugal buoyancy time

scale, τcb = R/
√
α∆Ω2R2.

If the flow is three-dimensional (3D), the dynamics
happen on time scales τff ≪ τΩ ∧ τff ≪ τcb. On the
other hand, if the flow is quasi-geostrophic (QG), such
that the primary force balance is between pressure gra-
dient and Coriolis forces, we have τΩ ≪ τff ∧ τΩ ≪ τcb.
The ratio of τΩ and τff yields the gravitational Rossby
number

Ro‖ =
τΩ
τff

=

√
αg∆H

2ΩH
=

√
Ek2Ra

Pr
, (2)

where ‖ denotes the alignment of the rotation and grav-
itational buoyancy vectors. We estimate the transition
value, R̃o‖, from 3D to QG flow using the criterion of
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FIG. 2. Relative deviations of Nu from (a) non-rotating,
non-centrifugal convection, i.e. with Fr = Ro−1

‖ = 0, and (b)

traditional non-centrifugal convection, i.e. with Fr = 0. The
phase diagrams are based on the DNS conducted at Ra = 107,
the used data points in Fr - Ro−1

‖ space are marked by crosses.

In addition the color-filled symbols show the results for Ra =
108 using the same color code, where the stars correspond to
the cases presented in Fig. 1. The horizontal dash-dotted line
indicates the bifurcation Ro‖ according to Weiss et al. [15].
The black (grey) hatched and cross-hatched area indicate the
transition region from the 3D and QC regimes to the QG
and CC regimes based on Ro⊥ and Ro‖ for Ra = 107 (108).
The transition borders are continued with dashed lines. The
vertical solid line marks Fr = γ, the transition from 3D and
QG to the centrifugally dominated regimes QC and CC. For
clarity, hatching and dashed lines are omitted in (b).

King et al. [3],

6 . Pr3/4Ra1/4R̃o
3/2

‖ . 20. (3)

This R̃o‖ transition prediction, marked by the hatched
area in Fig. 2(a) works well for our Pr and Ra values
and is in agreement with other studies [14]. Similarly,
if the flow is quasi-cyclostrophic (QC), i.e. the primary
force balance is between the pressure gradient and cen-
trifugal buoyancy, the characteristic dynamical scale is
τcb ≪ τΩ ∧ τcb ≪ τff . This gives a centrifugal Rossby
number [16]

Ro⊥ =
τΩ
τcb

=

√
α∆

2
=

√
Ek2RaFr

Prγ
= Ro‖

√
Fr

γ
, (4)

where ⊥ denotes the perpendicularity of the rotation and
centrifugal buoyancy vectors. Based on the similarity of
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these two Rossby number definitions, we hypothesize here
that the transitional R̃o⊥ also obeys Eq. (3), as indicated
by the cross-hatched area in Fig. 2(a).
We predict that the transition to centrifugally domi-

nated flows occurs approximately where the two transi-
tion Rossby numbers are equal, corresponding to τff ≃
τcb [17]. Crucially, this equivalence occurs at the inter-

section between the R̃o‖ and R̃o⊥ lines in Fig. 2 when

R̃o‖ ≃ R̃o⊥ ⇔ Fr ≃ γ. (5)

Note, that Eq. 5 can be equivalently expressed dimen-
sionally as H = g/Ω2, and holds irrespective of the spe-
cific value of Eq. (3). This regime transition implies,
non-intuitively, that centrifugal buoyancy effects will be
strongest in low-γ vessels.
For Fr > γ there exists an important subregime where

(τcb ∼ τΩ) ≪ τff . It is characterized by a triple balance
between pressure gradient, Coriolis, and centrifugal force
(CC), which is called gradient wind balance [18].
We verify these predictions using the dimensionless

heat flux, expressed by the Nusselt number Nu, that has
proven to be an excellent tool to indicate regime tran-
sitions. The results presented here are for γ = 0.365; a
small set of DNS with γ = 1.5 is provided in Fig. 5 of
the Supplemental Material as supporting evidence. The
relative deviation of Nu from the value without rotation
Nu00 ≡ Nu(Fr = Ro−1

‖ = 0), is shown in Fig. 2(a).

Indeed, Ro‖, Ro⊥, and γ adequately describe the bor-
ders between different heat transfer regimes [19]. Fur-
thermore, our regime diagram resembles those found in
similarly anisotropic geophysical systems (e.g. rotating,
stably-stratified dynamics described by Cushman-Roisin
and Beckers [20], Fig. 11.6).
For Fr < γ, the heat transport exhibits the well-known

characteristics of Coriolis-affected convection at moder-
ate Pr. With decreasing Ro‖ it is initially enhanced due
to Ekman pumping in the 3D regime, and then sup-
pressed due to the Taylor Proudman effect in the QG
regime [3]. For Fr > γ, i.e. when centrifugal buoyancy
is significant, the two so-far largely unexplored QC and
CC regimes show a strong heat transfer increase and de-
crease, respectively.
Figure 2(b) presents the relative deviation between Nu

and Nu0 ≡ Nu(Fr = 0). The quantity (Nu−Nu0)/Nu0

differentiates the effects of Coriolis and centrifugal buoy-
ancy forces on the heat transport. Thus, it allows us to
visualize the difference in Nu between fully-inertial ro-
tating convection (Fr 6= 0, e.g., laboratory experiments)
and cases for which centrifugal buoyancy has been omit-
ted (Fr = 0, e.g., idealized numerical simulations). The
results in Fig. 2(b) confirm the transition prediction (5).
Thus, we provide the experimentally testable prediction
that a smaller γ value may not necessarily lead to weaker
centrifugal effects. This differs substantively from the
widespread assumption that centrifugal effects become
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FIG. 3. Nusselt number contributions for Ra = 107 according
to Eq. (6); (a) NuFr, (b) Nuε. The color scale is calibrated
such that white corresponds to the value at Fr = Ro−1

‖ = 0.

The lines mark the regime transitions and the crosses mark
the Fr and Ro−1

‖ values of the data points used for the cre-

ation of the phase diagram, as in Fig. 2.

important at a fixed estimate of Fr = 0.05 [e.g. 3, 7], but
instead set in earlier in low-γ vessels. Furthermore, we
predict that there is an optimal Ra, according to Eq. (4),
along a line of constant Ro⊥ for every experimental set-
up. Measuring along this line may allow one to map out
the heat transport for arbitrary rapid rotation rates with
minimal deviations due to centrifugal buoyancy effects.

To explain the contrasting effect of centrifugal buoy-
ancy, we scalarly multiply Eq. (1a) with u and average
over the entire fluid volume and time. This yields the
exact analytical result

Nu = Pr
γ 〈‖∇u‖2〉V,t︸ ︷︷ ︸

≡Nuε

+Fr
√
PrRa γ〈urT r〉V,t︸ ︷︷ ︸

≡NuFr

+1. (6)

For Fr = 0, the well-known relationship between heat
flux and viscous dissipation rate ε is recovered [e.g. 21].
The extra term NuFr in Eq. (6) proves that centrifuga-
tion has a direct effect on the heat flux, which is always
present. This distinguishes it from pure Coriolis con-
vection. Furthermore, NuFr must be negative for suffi-
ciently high Fr, since the hot flow is radially inwards at
the bottom, i.e. ur < 0 and T > 0, and the cold flow at
the top is radially outward, ur > 0 and T < 0. This is
indeed confirmed by the phase diagram in Fig. 3(a). The
main contribution here is stemming from the boundary
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layers, where naturally the radial velocities and temper-
ature anomalies are highest.

However, the other term, Nuε, counteracts this direct
Froude effect. Thus, there is an indirect effect connected
to a fundamental change in flow morphology. For Ra =
107, the maximum positive contribution is almost twice
as high in magnitude as the negative effect due to the
centrifugality, as shown in Fig. 3(b). The reason for this
is the higher ε related to stronger gradients in the velocity
field, especially adjacent to the horizontal boundaries.

The flow fields presented in Fig. 1 and in the Sup-
plemental Material elucidate the fundamental changes in
flow morphology in the QC and CC regimes. These visu-
alizations show that turbulent C3 is inherently complex,
as it is susceptible to inertial, gravitational, shear, and
baroclinic instabilities [4].

The most common behavior of the Fr & γ flows is a
hot central upwelling, and associated with it the known
increase of the central temperature [e.g. 9, 22]. This up-
welling is visible in all flowfields in Fig. 1 and most promi-
nently in Fig. 1(a,e) for Ro‖ = ∞ and Fr = 2.0. In this
case, the primary force balance is cyclostrophic (QC) and
the reduced pressure is essentially parabolic in the radial
direction. Even with no Coriolis force, symmetry break-
ing effects suffice to create a retrograde drifting vortex
structure in the upper layer with an azimuthal m = 2
wave number.

For the other cases Ro‖ is finite and the Coriolis force
also acts on the fluid, leading to thermal winds. Under
the assumption of an axisymmetric, inviscid flow and also
neglecting non-linearities and any time-dependence, the
C3 thermal wind balance reads

∂zuφ = Ro‖γ
− 1

2 (∂rT + Fr r ∂zT ) . (7)

For Ro‖ = 1.0 and Fr = 1.0 (Fig. 1(b,f)) the primary
force balance is cyclostrophic (QC). That is, the pres-
sure gradient and centrifugal forces dominate over the
Coriolis force and the strong cyclonic (prograde) wind
essentially follows the isobars. As there is a pronounced
central pressure minimum where the converging hot fluid
rises, the wind has a very small radius of curvature in the
lower part of the cell. In addition, the upward flow is he-
lical due to the thermal wind. In the upper part of the
cell, where there is a broad pressure high, the flow di-
verges and becomes more 3D and can even split into two
warm streams. Hence, this flow is tornado-like both in
appearance and in terms of the underlying physics [23].

When the Coriolis force is stronger, for Ro‖ = 0.05 and
Fr = 10 (Fig. 1(c,h); QC/CC), the flow speed goes down
and the temperature field is steady and axisymmetric,
with a cone-like central hot core. The prograde azimuthal
flow is strong in the lower part of the cell and connected
to a pressure minimum, so that an eye in the velocity field
is formed, where the flow is quiescent. The retrograde
circulation at the top is localized to the outer rim.

The last case, shown in Fig. 1 (d,h), for Ro‖ = 0.05
and Fr = 2 is in the triply balanced CC regime. There
is a wide pressure high at the top, hence, the flow is an-
ticyclonic (retrograde) and opposed to that is an equally
wide pressure low at the bottom where the flow is cyclonic
(prograde). This leads to a strong broadening of the tem-
perature distribution compared to the columnar vortices
found for lower Fr. Furthermore, concentric ring-like
patterns are the prominent flow feature, resulting from
centrifugal instabilities [24].
The last two cases demonstrate that QC and CC flows

can generate eye- and secondary eyewall-like structures
that are qualitatively similar to those found in hurricanes
and typhoons [25, 26]and, thus, provide new avenues for
the dynamically self-consistent investigation of tornado
and tropical cyclone physics.
In sum, our results have substantial implications for

the investigation of rotating convection systems. They
suggest that the geometry of the tank is crucial to de-
termine the particular regime of Coriolis-centrifugal con-
vection. We make the testable prediction that the tran-
sition to centrifugally dominated convection occurs when
Fr & γ, instead of a fixed absolute Fr value, as tra-
ditionally assumed. In future laboratory and numerical
studies, we will further vary γ and make use of other di-
agnostic tools such as the center temperature [9, 22, but
cf. [14]].
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