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Reciprocity is a fundamental property of the wave equation in a linear medium that originates
from time-reversal symmetry or T -symmetry. For electromagnetic waves reciprocity can be violated
by external magnetic field. It is much harder to realize nonreciprocity for acoustic waves. Here we
report the first experimental observation of linear nonreciprocal transmission of ultrasound through
a water-submerged phononic crystal consisting of asymmetric rods. Viscosity of water is the factor
that breaks the T -symmetry. Asymmetry, or broken P-symmetry along the direction of sound propa-
gation, is the second necessary factor for nonreciprocity. Experimental results are in agreement with
numerical simulations based on the Navier-Stokes equation. Our study demonstrates that a medium
with broken PT-symmetry is acoustically nonreciprocal. The proposed passive nonreciprocal device
is cheap, robust and does not require an energy source.

A source of sound may generate a quite complicated
pattern of pressure in an inhomogeneous medium. The
acoustodynamic field can be calculated analytically only
for a few simple arrangements of scatterers. For more
complicated geometries, one relies on numerical solu-
tions. In a linear and lossless medium, the accuracy of the
solution can be controlled via the Rayleigh’s reciprocity
theorem which states that a signal emitted by a source
at a point A and received at a point B remains the same
if the positions of the emitter and receiver are switched
[1]. Two common concepts of nonreciprocity in sound
propagation are based on nonlinear effects [2, 3] and on
local circulation of fluid [4, 5]. They originate from two
known exceptions when Lorentz’s and Rayleigh’s reci-
procity theorems become invalid due to breaking a time
reversal symmetry.

The reciprocity theorem is very general since it origi-
nates from the time-reversal symmetry of the wave equa-
tion. It is valid for anisotropic media, for media with
temporal dispersion, and even for media with dissipative
losses [1, 6, 7]. At first glance, the latter statement con-
tradicts the irreversibility of any process accompanied by
an increase of entropy. However, the process can be ir-
reversible but still reciprocal if the energies dissipated
for forward and backward propagation are equal. Wave
transmission through a medium with energy losses be-
comes nonreciprocal if dissipation changes with the di-
rection of propagation. Recently this property was ex-
plored to demonstrate that acoustical losses may serve as
a source of T-symmetry violation, thus leading to non-
reciprocity in diffraction of sound from gradient-index
metasurface [8].

Dissipation in a viscoelastic medium is usually intro-
duced by adding the imaginary part to the modulus of

elasticity [9]. This leads to exponential decay of the wave
intensity but the energy losses accumulated for the oppo-
site directions of propagation remain equal. Indeed, the
decaying solutions are irreversible but they are the solu-
tions of the reciprocal wave equation. This is the physi-
cal reason why the reciprocity turns out to be compati-
ble with dissipation. In recent reviews on nonreciprocal
propagation of sound [10–12] as well as in the mathemat-
ical proof of the reciprocity theorem [7] the statement re-
garding the reciprocal propagation in dissipative media
is related to the particular class of media with complex
elastic moduli.

Complex (or dynamic) elastic modulus is a phe-
nomenological parameter which is introduced in the
macroscopic approach. A more detailed (microscopic)
approach requires calculation of the field of velocities v(r)
generated by a propagating sound wave. The power dis-
sipated due to viscosity is obtained by integration of the
local gradients of velocity [1]
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Here η and ξ are the viscosity coefficients. Integration
runs over the volume occupied by viscous fluid. We as-
sume that the scatterers are solid objects where dissipa-
tion can be neglected. The vector field of velocities v(r)
in a viscous fluid is calculated from the Navier-Stokes
equation solved together with the continuity equation
[1]. For sound waves, these equations can be linearized
leading to the following equation for velocity component
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FIG. 1: Phononic crystals used for the measurements of
acoustic transmission. (a) General view of the sample with
anodized rods. (b) Top view. The P -symmetry is broken
along the vertical axis and it holds along the horizontal axis.
(c), Square unit cell with asymmetric scatterer. The angle α
is a measure of broken P -symmetry. (d), Sample with 4 × 7
rows of unanodized aluminum rods.
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Here ρ = ρ(r) is the mass density and λ = λ(r) is the
bulk elastic modulus of the fluid.
Eq. (2) is obviously nonreciprocal since the terms in

the right-hand side contain the derivative v̇ = ∂v/∂t,
which changes its sign under time reversal. The reci-
procity theorem does not hold for this equation. How-
ever, the nonreciprocity is not manifested in a very spe-
cial case of symmetric set of scatterers along the direction
of propagation. The decay of sound in this case is exactly
the same for forward and backward directions, thus the
effect of nonreciprocity turns out to be hidden by geo-
metrical symmetry. Unlike this, in a general asymmetric
case the vector field v(r) and the energy absorbed de-
pend on the direction of propagation of sound, giving
rise to nonreciprocity. Any asymmetric scatterer(s) is a
source of nonreciprocity. But in order to make the effect
stronger the symmetry must be essentially broken. The
dissipation increases in the regions with strong gradients
of velocity. Therefore, scatterers with sharp corners are
more suitable for experimental demonstration of nonre-
ciprocity due to gradient induced differential dissipation
(GIDD).
For experimental demonstration of nonreciprocal

transmission due to GIDD, a phononic crystal of alu-
minum rods in water environment was used. A sam-
ple, shown in Fig. 1, has a square unit cell with par-
ity symmetry (P -symmetry) broken along the vertical
y-axis. A unit cell in Fig. 1c remains invariant un-
der parity transformation (x → −x, y → y) but it is
not invariant under the complementary transformation
(x → x, y → −y). Both transformations correspond to
parity inversion since they are represented by 2x2 ma-
trices with determinant -1. Thus, measuring acoustic
transmission along two perpendicular directions (along
x- and y-axis) in this 2D phononic crystal one can con-
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FIG. 2: Spectra of reciprocal transmission for the phononic
crystal of anodized rods. Two measured spectra of trans-
mission along the direction with P -symmetry (red and blue
lines) are practically equal, i.e. the transmission is recipro-
cal. The black line is the transmission spectrum simulated
in COMSOL software. Shaded regions show the positions of
the band gaps calculated for infinite sample. Insert shows the
orientation of the unit cell with respect to the direction of the
incoming wave.

clude about the role of P -symmetry in reciprocal or non-
reciprocal propagation of sound.

The period of the phononic crystal lattice is a = 5.5
mm and the radius of the 120◦ circle sector is 2.2 mm.
Two V301 1 Panametrics 0.5MHz immersion transducers
in a bistatic setup were arranged to measure forward and
backward transmission. More details about the samples
and their fabrication can be found in Refs. [13–16].

First, the transmission was measured along the sym-
metric direction. The measured spectra for forward and
backward transmission are given by two colored lines in
Fig. 2. The black line in Fig. 2 shows the transmis-
sion spectrum simulated by COMSOL software. Both
experimental spectra in Fig. 2 show most of the signa-
tures obtained numerically. The calculated transmission
exhibits a peak at f = 398 kHz which fits the gap re-
gion. This peak is due to constructive interference be-
tween finite number of rows. Results obtained for longer
samples show that with increasing length this peak is
shifted towards the passing band, its amplitude quickly
decreases, and the transmission within the gap vanishes.
Due to the inverse symmetry along the direction of sound
propagation, the transmission does not exhibit any reg-
ular feature of nonreciprocity. Small fluctuations in the
spectra are typical for this type of measurement. The
sound waves experience anisotropic scattering at each
rod but they follow the same ’path’ propagating forward
and backward. Since the simulated spectra are exactly
the same for two opposite directions, only one black line
appears in Fig. 2. Thus, the propagation along the di-
rection with P -symmetry is reciprocal.

Unlike this, the transmission spectra for propagation
along the line of broken P -symmetry exhibit regular fea-
tures of nonreciprocity. In Fig. 3 experimental (thin
lines) and numerical results (thick lines) for the trans-
mission in two opposite directions are plotted together.
Theoretical and experimental results are in a reasonable
agreement. All the gaps and passing bands of the band
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FIG. 3: Band structure and spectra of nonreciprocal trans-
mission for the phononic crystal of anodized rods. Low panel,
Band structure of infinite phononic crystal with inviscid water
background for sound wave propagating along the direction
of broken P -symmetry. Passing bands corresponding to even
(odd) eigenmodes are shown by black (grey) lines. Regions of
gaps between the even zones are shaded. Upper panel, Wavy
lines show experimental spectra for sound waves propagating
forward (thin red line) and backward (thin blue line). Numer-
ically calculated transmission spectra are shown by smooth
thick lines of the same colors. Insert shows orientation of the
unit cell with respect to the direction of the incoming wave.

structure in Fig. 4 are seen in the measured transmission
spectra. At normal incidence only the even modes, i.e.
the modes that are symmetric over the vertical axis can
be excited. These even modes are shown by black lines
in the band structure in Fig. 3. The odd modes turn
out to be deaf at normal incidence and they are shown
by grey lines. Due to asymmetry of the scatterers, there
are relatively large gaps (shaded in Fig. 3) between the
even passing bands. Within the bandgaps the transmis-
sion loss reaches upwards of 20 dB. Both experimental
and numerical results show relatively high transmission
within the gap region for frequencies 326 < f < 335 kHz.
We attribute this to excitation of the odd eigenmode ex-
isting in this frequency range. This becomes possible be-
cause the acoustic beam radiated by finite-size vibrating
membrane has, of course, some Fourier components with
nonzero wave vectors in the horizontal direction. These
diffracted components may excite the odd mode. The ex-
perimental transmission drops relatively slow within the
gap with the edge at f = 392 kHz. Finite transmission
extends up to 410 kHz. It is due to dissipation which
smoothes the edges of the gaps and leads to final density
of states within the gaps [17]. Since dissipation increases
with frequency the narrow gap between 425 and 435 kHz
in Fig. 2 is not well resolved.

Qualitatively, the nonreciprocity is characterized by
the difference Tcorner −Tarc between the acoustic energy
transmitted through the phononic crystal when the in-
coming wave hits the corner (red line in Fig. 3) and the
rounded part (blue line) of the rods. This difference is
plotted vs frequency in Fig. 4. The experimental curve
exhibits fast oscillations which originate from weak ir-
regular fluctuations of the transmitted energy in Fig. 3.
The green curve in Fig. 4 is obtained by averaging over
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FIG. 4: The nonreciprocity in the transmission spectra of
phononic crystal of anodized rods. The difference between
the transmissions coefficients plotted in Fig. 3. Experimental
(numerical) data are shown by thin (thick) line. Green line is
the result of averaging over fast oscillations.

these oscillations. The nonreciprocity corresponding to
the numerically calculated transmission is shown by the
black thick line. Nonreciprocity is reduced in the regions
of gaps where the transmission is low. While there is a
general agreement between the theory and experiment, it
is clearly seen that the measured nonreciprocity exceeds
the numerically simulated one. We attribute this differ-
ence to microscopic roughness of the aluminum rods. The
rods were anodized to increase their resistance against
oxidation in water. It is known that the surface of an an-
odized sample may have roughness of the size order from
a few to dozens of microns. At this scale, the surface of
the rods is not flat. Driven by oscillating sound pressure,
viscous fluid slows down near the surface of a rod at a
typical distance of δ = 2π

√

2η/(ω ρ). At the frequen-
cies ω ∼ 106 s−1 the thickness of the viscous boundary
layer in water (Stokes boundary layer) is estimated to
be ideally about a few microns. Since the essential part
of acoustic energy dissipates within the boundary layer
δ, the micron-size roughness strongly affects the level of
dissipation. Roughness not only changes fluid dynamics
within the boundary layer but it also increases the ef-
fective area where the energy dissipates. Thus, surface
roughness increases the dissipation of sound energy that
leads to stronger nonreciprocity. Random roughness also
can be considered as a stochastic element of the system
that breaks the P -symmetry at the microscopic level. At
the same time, the micron-size roughness does not con-
tribute to scattering because the wavelength of sound in
water is about 4-5 mm.

The effect of nonreciprocity can be demonstrated not
only in the transmitted power, but also in the dissipated
power Q̇ given by Eq. (1). The distribution of velocities
v(r) was calculated for a set of frequencies from 300 to
450 kHz. The gradients of all components of velocity were
calculated over the region occupied by the sample and
the integral (1) was calculated for each frequency. The
result of these calculations is presented in [13]. While
the energy dissipated in the sample is small, it far ex-
ceeds the energy dissipated within equal volume of free
water. The viscous decay length of 300 kHz sound in free
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FIG. 5: The transmission spectra of the phononic crystal
of unanodized rods shown in Fig 1 (d). Solid lines show the
transmission plot in logarithmic scale with left vertical axis.
Dotted lines show the linear transmission with right vertical
axis. The nonreciprocity level is about 10-15 dB within the
transmission bands. Insert shows orientation of the unit cell
with respect to the direction of the incoming wave.

water is about 100 m. Sound waves propagating through
a phononic crystal decay much faster. This occurs due
to multiple reflections from solid surfaces of the rods.
Each reflection is accompanied by high absorption[1] with
the rate ∼ √

ηω . Dissipation of acoustic energy in a
phononic crystal can be calculated using perturbation
theory over the terms proportional to the viscosity coef-
ficients in Eq. (1). After quite long calculations the lin-
ear correction ∆ωn(ω,k) to the nth eigenfrequency ωn(k)
of a lossless phononic crystal can be expressed through
multiple sums over reciprocal lattice vectors [13]. Eval-
uating the imaginary part near the frequency f0 = 373
kHz, where |Q̇| has a local maximum, we obtained that
the decay length 1/Imk = |Vg(f0)|/Im∆ω2(f0) does not
exceed 10 m. Here Vg = ∂ω/∂k is the group velocity.
This decay length is order of magnitude less than that
in free water. Really, the decay length is probably even
less due to surface roughness. A decrease of the decay
length due to presence of solid scatterers was predicted
in [18], where the effective viscosity has been introduced
in the long-wavelength limit. Calculated in [13], correc-
tion ∆ωn(ω,k) opens a way to introduce the effective
viscosity for 2D phononic crystal at any frequency.

The nonreciprocity in the spectra shown in Fig. 3 is
quite weak, achieving a maximum of about 5 dB. It can-
not be strong because it originates from the difference
between two quantities (acoustic absorption) and each
one is weak by itself. Indeed, the length of the sample
is ∼ 10 cm and the decay length of sound is ∼ 10 m.
Stronger nonreciprocity requires higher levels of viscous
dissipation. The latter can be increased not only by in-
creasing the viscosity of the background fluid but also
by using rods with rougher surfaces. To demonstrate
stronger nonreciprocity, we used a phononic crystal with
the same parameters as shown in Fig. 1 (a)-(c), where an-
odized aluminum rods are replaced by unanodized rods,
see Fig. 1 (d). These unanodized rods were formed us-
ing investment casting in a mold and their surfaces are of
much lower quality than that of anodized rods. Transmis-
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FIG. 6: Gradual growth of nonreciprocity with viscos-
ity. Nimerically calculated measure of nonreciprocity
pB(A)/pA(B)−1 vs normalized viscosity for frequency. Insets
show the geometry of the problem and blow-up of the region
of low viscosities.

sion spectra for propagation along the direction of broken
P -symmetry is shown in Fig. 5 in linear and logarithmic
scale. For this shorter (4 × 8) sample the details of the
band structure are not well-manifested because of much
stronger dissipation. Here the nonreciprocity reaches 10-
15 dB, i.e. it is much stronger than was observed for the
anodized sample. The wave that propagates towards the
sharp corner of the rods is strongly suppressed as com-
pared to the reversed wave. Such level of nonreciproc-
ity allows rectification of acoustic signals, while it still
remains lower than that reported in Refs. [2, 4] where
acoustic nonreciprocity was achieved by either nonlinear-
ity or by air-flow bias. An important advantage of the
proposed device is the broadness of the band of nonrecip-
rocal transmission. It turns out to be orders of magnitude
wider than the band of nonreciprocal transmission of the
earlier reported devices.

A periodic distribution of asymmetric scatterers en-
hances the effect of nonreciprocal propagation of sound.
However, even a single asymmetric scatterer is sufficient
to break PT -symmetry and observe nonreciprocity. We
calculated the nonreciprocity measured by the quantity
pB(A)/pA(B)− 1. The pressures produced by two equal
quasi-point sources radiated at 10 MHz and located at
A and at B, see Fig. 6. The reciprocal theorem states
that for inviscid fluid pA(B) = pB(A) for any shape of
the scatterer [1]. Viscosity and asymmetry give rise to
nonreciprocity, i.e. pA(B) 6= pB(A). For the viscosity of
water and the size of the scatterer used in the phononic
crystal in Fig. 1 the nonreciprocity is very weak that re-
quires high accuracy of numerical calculations. The error
in the numerical data in Fig. 6 does not exceed 1%. To
demonstrate that pB(A)/pA(B) − 1 6= 0 this difference
it plotted for increasing values of the viscosity normal-
ized to viscosity of water. The graph in Fig. 6 shows
graduate increase of pB(A)/pA(B) − 1 that serves as a
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direct evidence of nonreciprocity induced by broken PT -
symmetry.
In conclusion, a new mechanism of nonreciprocal

acoustic transmission through a medium with broken
PT -symmetry is presented. Since the violation of time-
reversal symmetry is due to finite viscosity, propagation
of sound is described by Navier-Stokes equation. Un-
like widely-used approach where dissipation is introduced
through complex elastic moduli, viscous fluid dynamics
leads to truly nonreciprocal propagation of sound if in-
version symmetry is broken. The proposed mechanism
can be observed using a passive linear device – phononic
crystals with asymmetric scatterers. Using this passive
device, which does not require an external source of en-
ergy, nonreciprocity is observed within very wide ranges
of frequencies. It is demonstrated that the level of non-
reciprocity increases for scatterers with rough surfaces
that means that the effective viscosity can be tuned by
changing the quality of the surface of the scatterers. The
observed nonreciprocal transmission is a finite-size effect.
It vanishes for very long samples since the transmission
becomes exponentially small.
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Politécnica de Valéncia. This work is supported by the
NSF under EFRI grant no. 1741677.

∗ Electronic address: arkady@unt.edu
[1] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd Ed.,

(Elsevier, Oxford, 1984).
[2] B.-I. Popa, S.A. Cummer, Non-reciprocal and highly

nonlinear active acoustic metamaterials, Nat. Commun.
5, 3398 (2014).

[3] C. Coulais, D. Sounas, A. Alù, Static non-reciprocity in
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