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Abstract

Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices.

However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions.

Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden

nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order op-

tical nonlinearity of the free electron response in gold in the technologically important near-IR frequency

range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocus-

ing to spatially confine the excitation fields, from measurements of the 2ω1−ω2 four-wave mixing response

as a function of detuning ω1−ω2, we find up to 10−5 conversion efficiency with a gradient field contribution

to χ
(3)
Au of up to 10−19 m2/V2. The results are in good agreement with theory based on plasma hydrody-

namics and underlying electron dynamics. The associated increase in nonlinear conversion efficiency with

decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for

enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension

of coherent multidimensional spectroscopies to the nanoscale.

∗ Corresponding author: markus.raschke@colorado.edu
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Nonlinear optics provides for optical frequency conversion and all-optical information processing

that can potentially overcome speed limitations of modern electronics and enable faster computing

and data communication. Device miniaturization and on-chip integration thus require an efficient

nonlinear optical response in deep sub-wavelength volumes.

However, because intrinsic optical nonlinearities are generally weak, various approaches to

achieve enhanced nonlinear conversion efficiencies have been considered, from exploring materi-

als with high nonlinearities [1] to optimizing the driving field distribution [2]. Simultaneous mode

volume compression and local field engineering for enhanced nonlinear optics can be achieved

through photonic crystals [3], metamaterials [4], microcavities [5], structures with reduced speed

of light [6], or plasmon-resonant metallic nanoparticles [7].

A significant gain in third-order nonlinear efficiency is of particular interest as it allows for all-

optical switching, femtosecond pulse control, and coherent ultrafast spectroscopy via four-wave

mixing (FWM) [8–11]. On the nanoscale [12, 13], third-order effects have been discussed in terms

of plasmonic local field enhancement [14–22], or in graphene due to the associated extreme spatial

field confinement [23], with some attention to finite size effects [24–26], surface contribution [27],

or ponderomotive terms [28].

Here we demonstrate a new mechanism of the third-order optical nonlinearity in metallic

nanoparticles and nanoantennas. The mechanism is based on large longitudinal field gradients

associated with strongly confined plasmonic fields. While radiation of the associated longitudi-

nal nonlinear currents into propagating transverse far-field waves is forbidden for translationally

invariant bulk metal, this restriction is relaxed on the nanoscale. We find that in subwavelength

structures the gradient field mechanism becomes an efficient and even dominant source term in

FWM. Using plasmonic nanofocusing to spatially confine the excitation fields, we show that the

corresponding third-order nonlinear optical susceptibility χ(3) in the near-IR spectral range can be

enhanced > 5 times when transitioning from non-degenerate to degenerate FWM with up to 10−5

conversion efficiency and a corresponding contribution to χ
(3)
Au of up to 10−19 m2/V2. We further

implement a plasma hydrodynamic model that provides even semi-quantitative description of the

nonlinear conversion efficiency and underlying electron dynamics.

In the experiment, we measure the FWM signal generated in a Au nano-tip antenna with

∼10 nm apex radius as a generalized model structure. In order to spatially confine the excitation

fields and eliminate unspecific background we use adiabatic nanofocusing and spatially filtered tip

apex emission detection as shown in Fig. 1a. Incident light is grating-coupled into surface plasmon
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FIG. 1. (a) Experimental configuration (left), with enhanced efficiency due to broad distribution of field

momenta kx,y for nanofocused SPPs associated with gradient field and spatial confinement (right). (b) Full

laser spectrum (gray), fundamental scattering off the tip apex (red), incoherent emission (IE) background,

and coherent FWM peak (blue). (c) Power dependence of the FWM signal (blue) and incoherent emission

(black) showing cubic and quadratic dependence, respectively.

polaritons (SPPs) that propagate toward the tip apex, adiabatically compress with accompanying

field enhancement, and generate a nonlinear optical response predominantly in the nanoscopic

apex volume [33].

As shown in Fig. 1b, two spectrally narrow pump pulses at center frequencies ω1 and ω2 (red)

and full width at half maximum (FWHM) of 10 nm are derived from a Ti:Sapphire oscillator

(Femtolasers, 10 fs nominal pulse duration, ∼ 800 nm, spectrum shown in gray). ω1 and ω2 are

obtained by blocking parts of the original spectrum with a tunable hardware amplitude mask in

the Fourier plane of a 4 f pulse shaper (using a CRi SLM640). Spectral phase and amplitude are

controlled to obtain a flat spectral phase across the full bandwidth of the optical field at the tip apex

by performing multiphoton intrapulse interference phase scans (MIIPS) based on apex-generated
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second harmonic generation as feedback signal [33].

The FWM emission (Fig. 1b, blue) from the tip apex is spatially filtered and detected with a

spectrometer (Princeton Instruments). For reference, we measure FWM on a flat single-crystalline

Au surface in far-field under normal incidence and back-reflection detection.

In addition to FWM, a spectrally broad background is observed due to incoherent emission

(IE) from electronic excitations within the sp-band of Au [34]. Its power dependence is quadratic

(1.98±0.06) as shown in Fig. 1c (black) and exhibits a frequency-dependent power law exponent

due to varying spectral shape (see Supplement), in agreement with previous studies [34, 35].

The coherent nonlinear FWM signal is centered at ωFWM = 2ω1−ω2. Its power dependence is

close to cubic (2.91±0.05) as shown in Fig. 1c (blue) and depends quadratically and linearly on the
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FIG. 2. Measurement of the FWM efficiency: (a) FWM (left) and fundamental (right) tip-scattered spectra

collected for varying excitation wavelength, (b) experimental FWM spectra for selected excitation wave-

lengths (red solid, λ1 = 790 nm, λ2 = 815, 825, 835, 845, 855, and 865 nm) together with calculated

reference signal (black dashed), (c) FWM efficiency extracted in two experiments where either λ1,0 (red) or

λ2,0 (black) are held constant, while varying λ2 and λ1, respectively.
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incident intensities at ω1 and ω2, respectively, as expected. With the estimated field enhancement

at the apex of ∼ 25 and the resulting peak electric field of ∼ 5 ·109 V/m, the nano-FWM conversion

efficiency [10] reaches ∼ 10−5.

In order to investigate the mechanism underlying this large FWM generation efficiency, we

then measure the spectral dependence of the FWM response. As shown in Fig. 2a, we collect

FWM (left) and fundamental (right) spectra emitted from the tip apex for excitation with constant

frequency ω1, while varying ω2. Reference FWM spectra are calculated from integration over the

fundamental scattering spectrum at the tip apex I(ω), assuming a flat spectral phase and frequency-

independent third-order susceptibility. The resulting expected Iref(ω) is

Iref(ω) ∝

∣
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√
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∣

∣

∣
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2

, (1)

plotted in Fig. 2b (black dashed) together with the experimental data (red solid) for selected values

of ω2. While peak position and overall spectral shape are in good agreement, the measured FWM

intensity increasingly exceeds the reference values calculated from Eq. 1 as ω2 approaches ω1.

We quantify that increase by calculating the FWM efficiency ηFWM as the ratio between the tip

IFWM and reference Iref FWM signals ηFWM = IFWM/Iref. ηFWM is plotted in Fig. 2c (red circles)

as a function of the varied excitation wavelength λ2, and exhibits a 6-fold increase within the

spectral range of the measurement. We then perform a corresponding measurement with variable

λ1 for fixed λ2 (black squares) exhibiting an apparent opposite trend. However, when plotting

both datasets against the detuning δω = ω1 −ω2 as shown in Fig. 3a, the FWM efficiency shows

a universal increase with decreasing δω for both measurements (red and black open symbols, left

scale). This indicates that the FWM mechanism is independent of the excitation frequency, and

only depends on detuning. The behavior is general, with a similar behavior of the FWM response

observed for Au nanorods (see Supplement). For comparison, the corresponding FWM result for

a flat single-crystalline Au surface measured in far-field is shown in Fig. 3a (filled blue squares),

with efficiency that is low and independent on detuning δω.

In general, the third-order polarization P(3)(ωFWM) can be frequency-dependent through

χ(3)(ω), local field enhancement factors at excitation and FWM frequencies L(ω),L(ωFWM),

and excitation spectrum E(ω), with P(3)(ωFWM) ∼ L(ωFWM)χ(3)(ω)L3(ω)E3(ω). In our case,

all factors corresponding to the local fields at the excitation frequencies are contained in both

measured IFWM and calculated reference Iref FWM intensities due to the spatially localized apex

detection, and therefore cancel out for the calculated FWM efficiency ηFWM = IFWM/Iref (for
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details, see Supplement and [36]). Further, under off-resonant near 1.5 eV excitation, L(ωFWM)

varies only weakly across the narrow experimental range of FWM frequencies. Therefore the

FWM efficiency is expected to follow the spectral behavior of the nonlinear susceptibility itself

ηFWM(ω) ∝
[

χ(3)(ω;ω1,ω1,−ω2)
]2

.

For bulk Au, χ(3) is weak in general with limited contributions from hot-electron, intraband, and

interband terms [37]. The hot-electron contributions only become significant for pulse durations

comparable to or exceeding the electron gas thermalization time of ∼ 500 fs and for excitation

wavelength close to the d- to sp-band transition [37, 38]; they are therefore expected to be negligi-

ble in our case (< 100 fs, ∼ 1.5 eV). Further, the sp-band in Au is very close to parabolic, implying

zero restoring force and vanishing intraband nonlinearity in the dipole approximation [37]. Ad-

ditional higher-order magnetic-dipole and electric-quadrupole contributions are longitudinal and

do not out-couple into transverse radiating modes. The dominant contribution to the nonlinear-

ity of bulk Au is then expected to involve either two-photon resonant or one-photon off-resonant

interband electronic transitions between d- and sp-bands of Au [10]. The observed weak depen-
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FIG. 3. Modeling the FWM efficiency: (a) experimental result for nano-tip (red and black open circles) and

single-crystalline Au surface in far-field (filled blue squares, dotted line is a guide to the eye), together with

the model fit (red). Inset shows the enhancement of the third-order susceptibility of the tip relative to that

of bulk Au as a function of detuning between the two excitation frequencies. (b) Schematic of the intraband

FWM process. (c) Illustration of the FWM generated by longitudinal nonlinear currents and out-coupled

into transverse fields.
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dence of the FWM efficiency on detuning δω in bulk Au shown in Fig. 3a (blue squares) is then

consistent with the absence of resonant behavior in δω for such transitions.

In nanostructures, in contrast, the intraband contribution can become an efficient and leading

source term. Spatially compressed SPP modes at the tip apex E = E0eikNF·r exhibit strong field

gradients |∂E/∂r| ∝ kNFE in both transverse and longitudinal directions, corresponding to large

linear momenta pNF = ~kNF ∼ π~/R, where R is the tip apex radius. For typical radii of R ∼ 10 nm

the near-field momenta can reach beyond kNF ∼ 3 ·106 cm−1, exceeding the corresponding far-field

value for the given wavelength range by 2 orders of magnitude. These in-plane momenta then

allow for resonant and phase-matched electronic transitions within the sp-band as illustrated in

Fig. 3b. With the apex-confined field parallel with respect to the tip axis, the dominant component

of the third-order nonlinear source current j(3) is longitudinal. This gives rise to FWM emission

or scattering with primarily dipolar characteristics as given by the antenna mode of the tip, with

maximum radial emission, and zero emission in the axial direction [30, 39]. This facilitates out-

coupling of the longitudinal current oscillations and resulting polarization density to the outgoing

transverse electromagnetic waves as pictured in Fig. 3c. This is in fundamental contrast to the

case of bulk Au, where the corresponding radiative process is forbidden for far-field reflection or

refraction in translationally invariant media.

To provide a simple model to quantify the nonlinear response of the free electrons in a nano-

structure (see Supplement for details), we consider the equation of motion for a degenerate electron

plasma against the neutralizing background of immobile ions, neglecting the thermal motion, given

by

∂v

∂t
+ γ ·v+(v ·∇)v−

e

me
E−

e

mec
v×B = 0, (2)

with external electric and magnetic fields E and B, electron velocity v, effective mass me, electron

charge e, and collision rate γ. We then consider longitudinal components of the velocity perturba-

tion, fields, and their gradients along the x axis, E = Ex̂ and v = vx̂, and neglect the contribution

from the magnetic field. We treat the electric field as a perturbation, approximate field gradi-

ents ∂x by 1/R, and find the third-order nonlinear term in the electron velocity v(3) at frequency

ω3 = 2ω1 −ω2 in response to the two pump fields E1 and E2 at frequencies ω1 and ω2.

The third-order susceptibility is related to the velocity through the nonlinear polarization P(3) =
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χ(3)E2
1 E∗

2e−iω3t and current density j(3) =
dP(3)

dt
= en(0)v(3), and can be expressed as

χ
(3)
intra = i

6n(0)e4

ω3m3
eR2

γ

(γ− iω1)
2 (γ+ iω2)(γ− iω3)

(

γ2 +δω2
) , (3)

with the electron density n(0) and a resonance at ω1 = ω2 with a Lorentzian FWHM of 2γ. A fit of

this model to our experimental ηFWM(δω) ∝
(

χ
(3)
Au +χ

(3)
intra(δω)

)2

, with γ and χ
(3)
intra(0) as the only

free parameters, is in excellent agreement with our experimental data (Fig. 3a, red solid line). The

resulting value of 2γ = 128±14 meV corresponds to the electron collision rate of γ = 64±7 meV,

or scattering time τ = 10.3±1.2 fs, which is in good agreement with the Drude relaxation time of

τD = 9−14 fs for Au [40, 41].

From the fit value χ
(3)
intra(0), we obtain the ratio of the intraband contribution at zero detuning

to the third-order susceptibility of bulk Au, with χ
(3)
intra(0)/χ

(3)
Au = 4.3. According to Eq. 3, this

parameter depends on the radius of curvature at the tip apex R. The frequency dependence of the

relative contribution of the gradient-induced nonlinearity is shown in the inset of Fig. 3a, with

the black dashed line indicating the intrinsic third-order susceptibility of Au as extracted from the

far-field measurement on the single-crystal Au sample. Indeed, for tips of different sharpness, we

extract values of χ
(3)
intra(0)/χ

(3)
Au = 2.2− 8.7 and γ = 34− 69 meV, with the distribution reflecting

the expected range of tip apex radii and damping to a good approximation (see Supplement). We

note that, as the shape of the tip apex deviates from a perfect sphere, slight variations in geometry

effectively correspond to variation in the sphere radius in the model.

We then estimate the absolute value of the third-order nonlinear susceptibility assuming all

frequencies ω1,2,3 ∼ 1.5 eV, carrier density n(0) ∼ 6×1022 cm−3, me equal to the effective electron

mass in Au, and tip apex diameter 2R ∼ 15 nm:

|χ(3)| ∼
6n(0)e4

meγR2ω2
1ω2ω2

3

∼ 7.6×10−12 esu. (4)

This corresponds to |χ(3)| ∼ 1.1×10−19 m2/V2 in SI units, and agrees with a previously reported

value for Au of 2 ·10−19 m2/V2 [42] for similar excitation conditions.

Lastly, within the limits given by damage threshold and minimum necessary signal level, we

measure coherent FWM efficiency together with the incoherent nonlinear emission for selected

values of excitation power, with the results shown in Fig. 4a. Our measured incoherent emission

spectra undergo a significant transformation with increasing incident power. Although the exact
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a) b)

FIG. 4. (a) FWM efficiency (red) and incoherent emission (IE) background spectra (black) for excitation

power, varying from 0.4 mW (top panel), to 1.3 mW (middle), and to 2.2 mW (bottom). (b) Electron gas

temperature Te (black squares) extracted from IE fits, and electron collision rate γ (red circles) extracted

from FWM fits, for varying excitation power.

mechanism of the incoherent emission in Au is still under debate [35, 43–45], it generally in-

volves electronic transitions within the sp-band, and therefore its spectrum depends sensitively on

the temperature-dependent shape of the Fermi–Dirac distribution for the electron gas. In agree-

ment with previous work [34, 35, 43], we can approximately describe the spectra by a Boltzmann

distribution IIE(δω) ∝ e−δω/kBTe , with the electron temperature Te increasing from 410±30 K to

1700±300 K for excitation powers between 0.4 mW and 2.2 mW. The extracted electron temper-

ature is shown in Fig. 4b (black squares) together with an error-weighted linear fit, where the gray

area indicates the uncertainty of the fit.

In contrast, the spectral shape of the FWM signal changes only slightly, which is consistent

with our model that predicts the FWM dependence on detuning to be fully defined by only (i)

spatial extent of the field gradients and (ii) electron collision rate γ. The former is defined by the

tip apex geometry and therefore does not depend on excitation power. The latter is only weakly

dependent on temperature for the range of laser intensities used (Fig. 4b, red circles), with only a

slight increase from 46±6 meV to 64±7 meV. This can be attributed to temperature-dependent

electron–phonon (γe−ph) or electron–electron (γe−e) scattering that both contribute [46, 47] to the

total relaxation rate γ = γe−ph+γe−e. While the electron–phonon scattering rate depends on lattice

9



temperature that will not vary significantly during the pulse duration of < 100 fs, the electron–

electron scattering rate follows the electron temperature as γe−e ∝ (kBTe)
2 +(~ω)2

. Considering

the approximately linear power dependence of Te, the corresponding power dependence of the re-

laxation rate can be described by a quadratic function γ(P) = γ0+αP2 (red curves, error-weighted

fit), with the extracted temperature-independent contribution of γ0 = 41± 6 meV as the Drude

relaxation at 0 K.

As described in this work, the enhancement of the optical nonlinearity in nanotips and nanorods

through a strong dipole-forbidden third-order contribution represents a general mechanism for

nano-structured media with free carriers where high field gradients can be achieved. Relying on

longitudinal field gradients of plasmon modes, our mechanism complements nonlinear processes

that arise from retardation-induced symmetry breaking, e.g., in second-order light scattering [29–

32]. In contrast to conventional approaches for increased nonlinearity in metallic nano-particles

relying on extrinsic local field enhancement, this gradient-field effect modifies the microscopic

nonlinear susceptibility, and can therefore contribute even in the absence of intrinsic optical non-

linearities of the medium. Further, it provides enhancement in materials that already possess

intrinsic nonlinearities, e.g., in graphene, where the strong third-order susceptibility has received

much attention recently [48], yet with monolayer volume offering small signal levels that can now

be increased further through nano-structuring and engineering large field gradients. With 1/Rn−1

size scaling (Eq. 3) of the gradient-field term in the n-order susceptibility χ(n), its contribution

increases favorably with decreasing sample volume and increasing order of the nonlinearity. The

results of this work not only offer insight into the microscopic mechanisms of the nonlinear op-

tical response on the nanoscale through the hydrodynamic plasma model, but also demonstrate a

qualitatively new approach to nonlinear nano-optics opening new avenues from on-chip nonlinear

all-optical information processing to coherent multidimensional nano-spectroscopy and -imaging.
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