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The realization of a high-efficiency microwave single photon detector is a long-standing problem in
the field of microwave quantum optics. Here we propose a quantum non-demolition, high-efficiency
photon detector that can readily be implemented in present state-of-the-art circuit quantum elec-
trodynamics. This scheme works in a continuous fashion, gaining information about the photon
arrival time as well as about its presence. The key insight that allows to circumvent the usual
limitations imposed by measurement back-action is the use of long-lived dark states in a small en-
semble of inhomogeneous artificial atoms to increase the interaction time between the photon and
the measurement device. Using realistic system parameters, we show that large detection fidelities
are possible.

Introduction—While the detection of localized mi-
crowave photons has been realized experimentally [1–
3], high-efficiency detection of single itinerant microwave
photons remains an elusive task [4]. Such detectors
are increasingly sought-after due to their applications in
quantum information processing [5–7], microwave quan-
tum optics [8], quantum radars [9–11], and even the de-
tection of dark matter axions [12].

In recent years, a large number of microwave pho-
ton detector proposals have been put forward [13–21],
and some proof-of-principle experiments have been per-
formed [7, 22–24]. For their operation, many of these
proposals rely on a priori information about the pho-
ton arrival time [7, 14, 15, 17, 24, 25], limiting their ap-
plicability. In this Letter, we are rather interested in
continuous detectors, where the arrival time of a photon
can be inferred a posteriori [13, 16, 18–23]. Moreover,
we also focus on non-destructive detection of photons
[4, 13, 19, 25]. This property proves to be useful in a
number of applications, such as quantum networks [5, 6]
and the study of quantum measurement [26]. A challenge
in designing continuous single photon detectors is set by
the quantum Zeno effect, which loosely states that the
more strongly a quantum system is measured, the less
likely it is to change its state [27–29]. Any non-heralded
photon detection scheme based on absorbing the photon
into a medium thus faces the problem that strong contin-
uous measurement reduces the absorption efficiency, and
thus the photon detection efficiency [13].

In this Letter, we introduce a non-destructive and con-
tinuous microwave photon detector that circumvents this
measurement back-action problem with minimal device
complexity, without requiring any active control pulses,
and avoiding the use of non-reciprocal elements [19, 20].
In essence, our proposal relies on absorbing a signal pho-
ton in a medium made of an ensemble of inhomogeneous
artificial atoms, where the presence of long-lived dark
states allows to increase the effective lifetime of pho-
tons inside this composite absorber without lowering its
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FIG. 1. (a) Sketch of a single absorber model for photon de-
tection. A signal photon (red) is absorbed in a mode B and
induces a coherent state displacement in a harmonic mode A
which is measured using homodyne measurement. (b) The
coupling between A and B induces fluctuations in the ab-
sorption spectrum of mode B, preventing the absorption of
incoming photons. (c) Illustration of phase space for mode A
as a photon is absorbed in B.

bandwidth. We show that high detection efficiencies can
be obtained by weakly and continuously monitoring the
ensemble excitation number. We also present a sim-
ple circuit-QED design implementing this idea [30, 31],
where an ensemble of transmon qubits [32] are contin-
uously measured through standard dispersive measure-
ment.
Single-absorber detector—Before introducing our pro-

posal based on an ensemble of artificial atoms, we first
study a simple single-absorber model, and motivate our
solution by explaining how the quantum efficiency of such
a scheme is fundamentally limited due to quantum me-
chanical back action effects. This simple model is illus-
trated in Fig. 1(a), where a signal photon (red) traveling
along an input waveguide is absorbed into a single “ab-
sorber” mode B (orange) at a rate κB . This first mode
is coupled to a second “measurement” harmonic mode A
(green) which decays at a rate κA into an output port
continuously measured using a standard homodyne mea-
surement chain (not shown). In this toy model, we as-
sume that the two modes are coupled by the longitudinal
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interaction (~ = 1)

ĤI = gz b̂
†b̂(â+ â†), (1)

where â, b̂ are the annihilation operators of mode A
and B respectively. This interaction implements a text-
book photon number measurement: the measured ob-
servable b̂†b̂ is coupled to the generator of displacement of
a pointer state X̂A = â+ â†. As schematically illustrated
in Fig. 1(c), homodyne measurement of the orthogonal
quadrature ŶA = −i(â− â†) allows to precisely measure
the photon number inside the absorber mode B without
destroying the photon.

In order to induce a displacement in mode A, a sig-
nal photon however needs to first enter mode B, an un-
likely process at large coupling strengths gz. Indeed, as
schematically illustrated in Fig. 1(b), ĤI induces quan-
tum fluctuations of the absorber’s frequency which can
prevent it from absorbing the arriving photon. This
quantum fluctuation-induced spectral mismatch can be
interpreted as a quantum Zeno-like effect since the width
of these fluctuations directly relates to the measurement
strength through gz [29]. In order to minimize this un-
wanted measurement back-action, the width of these fluc-
tuations, compared with the absorber’s linewidth gz/κB ,
should ideally be minimized. On the other hand, the dis-
placement of the measurement mode A, which is given
roughly by gz/κB as well, should be maximized to im-
prove the detection efficiency [33]. The optimal quan-
tum efficiency of this toy model is obtained by balancing
these two conflicting requirements. Numerically we find
an optimal operating point at gz/κB = 1, the smallest
coupling strength for which the induced displacement is
distinguishable from vacuum noise 〈Ŷ 2

A〉vacuum = 1.
Numerical Simulations—To model the signal photon

arriving at the detector, a source mode C is intro-
duced, with a frequency matching the absorber mode B,
ωC = ωB . To minimize reflection, we take the signal
photon linewidth to be much smaller than the absorber’s
linewidth, κC/κB = 0.1. Following the experiments of
Refs. [34, 35], this mode is initialized with one excitation
leading to a signal photon emission with an exponentially
decaying waveform.

The quantum efficiency of this simple photon detector
is calculated by simulating multiple realizations of the
above scenario and computing the corresponding homo-
dyne current out of the measurement mode A. This is
realized by numerically integrating the stochastic master
equation [26]

dρ = Lρ dt+
√
ηhκAH[−iâ]ρ dW,

Ĥ = ĤI −
i
√
κBκC
2

(ĉb̂† − ĉ†b̂),
(2)

where ĉ is the annihilation operator of the source mode C
and L• is the Linbladian superoperator L• = −i[Ĥ, •] +∑
j D[L̂j ]• with L̂1 =

√
κAâ, L̂2 =

√
κB b̂ +

√
κC ĉ. The

combination of the term coupling ĉ and b̂ in Ĥ and of
the composite decay operator L̂2 assures that the output
of mode C is cascaded to the input of mode B [36, 37].
Moreover, ηh is the homodyne measurement chain ef-
ficiency, D[L̂]• = L̂ • L̂† − 1

2{L̂†L̂, •} is the dissipa-
tion superoperator and H[â]• = â • + • â† − 〈â + â†〉•
is the homodyne measurement back-action superopera-
tor. The Wiener process dW is a random variable with
the statistical properties E[dW ] = 0 and E[dW 2] = dt,
where E[•] denotes an ensemble average. For each
trajectory, the resulting homodyne current is given by
Jhom(t) =

√
ηhκA〈ŶA〉 + dW/dt [26]. Here and below,

we use Ntraj = 2000 trajectories and, to focus solely on
the characteristics of the photodetector itself, assume a
perfect homodyne detection chain ηh = 1.

For each homodyne current realization, we consider a
photon is detected if the convolution of the signal with
a filter, J̄hom(t) = Jhom(t) ? f(t), exceeds a threshold
value Ythr. To give more weight to times where the
signal is, on average, larger, we use f(t) ∝ 〈ŶA(t)〉ME

computed by solving the standard unconditional master
equation [20]. The quantum efficiency η = Nclick/Ntraj
is then computed, where Nclick is the number of trajec-
tories where a photon is detected [38]. Although with
this model no prior information about the photon arrival
time is needed, if this information is available the mea-
surement can be restricted to a time window of length
τm. In that case, a better metric is the measurement fi-
delity F = 1

2 (η + 1− Γdark × τm) [17, 19], where Γdark
is the dark count rate, i.e. the rate at which the detec-
tor “clicks” without a signal photon. To maximize the
detector repetition rate, τm is set to the smallest value
that maximizes the fidelity.

For the single absorber model with gz/κB = 1 and
κA/κB = 0.2, we obtain an efficiency of 79% with
Γdark/κB = 1.4 × 10−3 and a fidelity of F = 82% for
a time window of κBτm = 125. The detector dead time
after a detection event is given by the reset time of the
measurement mode A back to vacuum. This corresponds
to several decay times 1/κA or, alternatively, can be sped
up by using active reset approaches [39–41].

This scheme is similar to previously studied mod-
els [13, 20, 42] and, although it leads to relatively large
detection fidelities, the resulting displacement of mode A
is small, 〈ŶA〉 ∼ gz/κB = 1. In this situation, adding an
imperfect homodyne measurement chain, ηh < 1, leads
to a significant reduction of the quantum efficiency.

Absorption into an ensemble—As already pointed out,
the key issue with using a single absorber is that both the
total displacement of the measurement mode A and the
measurement back-action on B scale with gz/κB . This
stems from the fact that the time spent in a simple reso-
nant system is given by the inverse of its bandwidth. In
order to increase the quantum efficiency, we thus present
a scheme where the interaction time with the photon is
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FIG. 2. (a) The absorber B is replaced by an ensemble of
inhomogeneous modes coupled at the same point of the input
waveguide. (b) Redrawing of (a) in the bright and dark states
basis for N = 3. (c) Possible circuit-QED implementation for
N = 3. Tunable transmon qubits acting as absorbers are
coupled capacitively on one side to an input transmission line
and on the other side to a measurement resonator.

increased while keeping the ratio gz/κB constant.
As schematically illustrated in Fig. 2(a), we first re-

place the single absorber by a small ensemble of N . 5
artificial atoms and, second, we inhomogeneously de-
tune each atom with respect to the average ensemble
frequency. By connecting these absorbers approximately
to the same point of the input waveguide [43], symme-
try imposes that the absorbers state, after the absorp-
tion of a photon, should be invariant under permuta-
tion. The only state satisfying this condition is the all-
symmetric superposition of excitation in the absorbers
b̂+ = 1/

√
N

∑
i b̂i, which we will refer to as the bright

state [44, 45]. Other non-symmetric states, which we
call dark states, completely decouple from the waveguide
and are long-lived. We, furthermore, design the coupling
to the measurement mode A such that the measured ob-
servable is N̂B =

∑
i b̂
†
i b̂i, the total photon number in

the ensemble. In this case, the ideal interaction picture
Hamiltonian becomes

ĤE
I = gzN̂BX̂A +

N∑
i=1

∆ib̂
†
i b̂i, (3)

where ∆i = ωBi − ωB . κB is the ith atom detuning
with respect to the average ensemble frequency ωB =∑
i ωBi/N and the first term represents the direct gener-

alization of Eq. (1) for an ensemble of atoms.
In this model, a signal photon is absorbed in the col-

lective bright state b̂+ at a rate scaling linearly with N .
Without loss of generality and to fix the effective collec-
tive absorption rate of the absorbers at κB , we choose
the bare linewidth of the atoms to be κBi = κB/N . In
the case where the atoms are on resonance ∆i = 0 ∀ i,

the bright and dark subspaces are uncoupled and the
model becomes equivalent to the single absorber model
illustrated in Fig. 1(a) [46].

On the other hand, non-homogeneous detunings ∆i 6=
∆j lead to coupling of the bright and dark subspaces. If
this coupling is carefully adjusted, a signal photon can
be absorbed into the bright state, transferred to a long-
lived dark state and, after some time τtrap, return to
the bright state where it is re-emitted. Figure 2(b) il-
lustrates this process schematically with the bright state
(yellow) being coupled to N − 1 dark states (dark or-
ange). In practice, this process is optimized by having
equally spaced detunings. Crucially, changing the de-
tunings affects neither the coupling strength gz nor the
effective linewidth κB , leaving the measurement back-
action unaffected. On the other hand, the total displace-
ment induced in the measurement mode A is changed
from gz/κB to roughly gz × (1/κB + τtrap). As a re-
sult, by increasing τtrap and reducing gz, we can thus, as
desired, significantly increase the quantum efficiency by
simultaneously increasing the induced displacement and
reducing the measurement back-action. In practice, τtrap
can be made longer by increasing the number of dark
states where the photon can get trapped (i.e. increasing

N) and optimizing the detunings, ~∆, accordingly [47]. In
the large N limit, the mechanism leading to τtrap is rem-
iniscent of photon memories using inhomogeneous spin
ensembles [48–51].

We perform full stochastic master equation simula-
tions using Eq. (2) with the replacements b̂ → b̂+,
ĤI → ĤE

I and show the increase in measurement fi-
delity, F , as a function of ensemble size in Fig. 3(a). As
shown in panel (b), for N = 4, a quantum efficiency of
η = 92% is obtained at a low estimated dark count rate
Γdark/κB = 7×10−6. For a time window of κBτm = 126
this translates to the measurement fidelity of F = 96%
observed in panel (a). As illustrated in panel (b), the
threshold Ythr can be varied to trade a higher dark count
rate for a higher efficiency, or the converse. Here, Γdark
is computed from trajectories with no signal photon (full
lines) and, where it is too small to be precisely calculated
from trajectories, estimated from time correlations in the
filtered signal from vacuum (colored dashed lines) [47].

Importantly, due to the increased interaction time, the
measured homodyne signal increases with N and, for
N = 4, is already much larger than vacuum noise. As
a result, the detector becomes increasingly robust to po-
tential imperfections in the homodyne detection chain
(ηh < 1). We, moreover, expect the quantum efficiency to
continue increasing as the number of absorbers is raised
above 4. For N ≥ 5, the required Hilbert space size
for numerical simulations is impractically large. Never-
theless, at N = 4, the performance is already close to an
expected maximum of ηmax ∼ 96% indicated by the black
dashed line in panels (a) and (b). This upper bound is
due to high frequency components of the signal photon
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FIG. 3. (a) Fidelity as a function of the number of absorbers.
The circles are calculated using the ideal model with κA/κB =

0.2, g
(1)
z /κB = 1, g

(2)
z /κB = 0.6, g

(3)
z /κB = 0.5, g

(4)
z /κB = 0.4

with the detunings ~∆(2)/κB = (0.55, −0.55), ~∆(3)/κB =

(0.7, −0.7, 0) and ~∆(4)/κB = (0.7, −0.7, 0.23, −0.23). The
diamonds are calculated using realistic parameters for a
transmon ensemble dispersively coupled to a resonator with
κB/2π = 10 MHz, gz/χ = 10 and T1, T2 = 30µs. (b) Detec-
tor efficiency as a function of the dark count rate. Solid lines
correspond to statistics extracted from trajectories while for
the dashed lines Γdark was estimated using an analytical for-
mula. The lines were calculated for the ideal model and the
points indicate where the fidelity is maximized. The black
dashed line in both panels correspond the upper bound ηmax

imposed by the photon shape used here.

that are directly reflected from the absorber and thus do
not lead to a detectable signal in mode A [47]. This upper
bound value is linked to the choice of both detector and
signal photon parameters and could be improved upon
further optimization.

Since our proposal is continuous, the time τc at which
the homodyne signal crosses the threshold reveals infor-
mation about the photon arrival time. Fig. 4 shows his-
tograms of the normalized number of counts for τc, as
recorded from trajectories where a photon is detected.
In Fig. 4(a), the number of absorbers is varied and the
signal threshold, Ythr, is set to optimize the fidelity (see
Fig. 3). On the other hand, in Fig. 4(b), we set N = 4
and vary the threshold. In both panels, the input pho-
ton shape (red) is shown for comparison. As the thresh-
old increases, the distribution of crossing times narrows
and the precision on the photon arrival time therefore
increases. As mentioned above, increasing N leads to
larger homodyne signals. Hence, adding more absorbers
allows to increase the threshold which, in turn, improves
the arrival time precision. Moreover, since 1/κC is the
longest timescale in these simulations, at N = 4 the
photon shape can be resolved from the histogram. The
mismatch between the distribution and the red line near
κBt = 0 is due to the sharp, high frequency feature of the
input photon that is reflected from the absorbers without
detection.

Physical implementation—A possible implementation
of this model, based on dispersive coupling of transmon
qubits, is illustrated in Fig. 2(c). Here, an ensemble
of superconducting transmon qubits is capacitively cou-
pled on one side to a transmission line and on the other

FIG. 4. (a) Normalized number of detection events as a func-
tion of time for (a) different number of absorbers in the ideal
model Eq. (3) and for (b) different thresholds for N = 4.
In both panels, the input photon shape (red) is shown for
comparison and an arbitrary time offset has been substracted
from the homodyne signal.

side to a measurement resonator (mode A) with cou-
pling strength g. We take a large detuning between the
qubits center frequency ωB and the resonator frequency
ωr − ωB � κA, κB , g and use the standard dispersive
approximation [47]. The absorption of a signal photon
by the qubits induces a shift in the resonator frequency
which is detected by continuously probing the resonator
with a coherent drive corresponding to a field ampli-
tude α [30]. In this situation, we find that the system
of Fig. 2(c) is well described by the displaced dispersive
Hamiltonian [47]

ĤD
χ = gzN̂BX̂A+

N∑
i=1

∆ib̂
†
i b̂i+2χN̂B â

†â+∆+b̂
†
+b̂+, (4)

where χ is the usual transmon dispersive shift [32, 47],
gz = 2χα, and ∆+ results from a combination of the
resonator-induced Lamb shift and spurious qubit-qubit
coupling [47]. The first two terms correspond exactly to
the ideal model Hamiltonian Eq. (3), while the two ad-
ditional last terms are small and imposed by this specific
implementation.

As the diamonds in Fig. 3 show, at α = 5 the two
additional terms in Eq. (4) have a minimal impact on the
quantum efficiency. Moreover, it is possible to mitigate
the detrimental effect of a small ∆+ by adjusting the

detunings ~∆.
As an example, choosing realistic parameters N = 4,

κB/2π = 10 MHz, κA/2π = 2 MHz, χ/2π = 0.4 MHz,

α = 5, ~∆/2π = (6.6, −7.4, 2.3, −2.3) MHz and using
current transmon decoherence times T1, T2 = 30µs [52],
we obtain η = 92% with Γdark = 4.2× 10−3µs−1. Given
a time window of τm = 2µs, this corresponds to a large
measurement fidelity of F = 96%.
Conclusion—We have presented a high-efficiency, non-

destructive scheme for itinerant microwave photon detec-
tion where no prior information about the photon arrival
time is needed. This scheme is based on the continuous
measurement of the photon number in an ensemble of
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inhomogeneous artificial atoms where the photon can be
stored for long times due to the existence of long-lived
dark states. We also presented a realistic physical im-
plementation of this idea using an ensemble of transmon
qubits dispersively coupled to a single resonator. Using
only four transmons, we estimate that fidelities as high as
96% are attainable for the photon shape considered and
we expect that adding more transmons will improve this
fidelity even further. Since the output signal is propor-
tional to the total number of photons, the same model
could be used as a photon-number resolving detector.
Future work will investigate this possibility.
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