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We developed a novel perturbative expansion based on the replica trick for the Floquet Hamiltonian governing

the dynamics of periodically kicked systems where the kick strength is the small parameter. The expansion is

formally equivalent to an infinite resummation of the Baker-Campbell-Hausdorff series in the un-driven (non-

perturbed) Hamiltonian, while considering terms up to a finite order in the kick strength. As an application of

the replica expansion, we analyze an Ising spin 1/2 chain periodically kicked with magnetic field of strength

h, which has both longitudinal and transverse components. We demonstrate that even away from the regime of

high frequency driving, if there is heating, its rate is nonperturbative in the kick strength, bounded from above

by a stretched exponential: e−consth−1/2

. This guarantees the existence of a very long pre-thermal regime, where

the dynamics is governed by the Floquet Hamiltonian obtained from the replica expansion.

Introduction.— Time-periodic modulation of interactions is

a powerful tool to engineer properties of materials in both ar-

tificial and condensed matter systems [1]. In particular, high

frequency driving is the cornerstone of various experiments

and proposals inducing interactions such as spin-orbit cou-

pling [2], artificial gauge fields for uncharged particles [3, 4];

it has been applied to dynamically tune or suppress hopping

amplitude in optical lattices [5], and also to change topologi-

cal properties of materials [6–8].

Given a periodic driving protocol, however, determining the

Floquet Hamiltonian that governs the stroboscopic evolution

is usually a highly non-trivial task. Except for some special in-

tegrable cases [9–12], one is compelled to apply approximate

methods, e.g. variants of high frequency expansion (Magnus

[13], van Vleck [14] or Brillouin-Wigner [15] expansions).

These provide a local effective Hamiltonian in each order of

the expansion, however, until recently, not much had been

known about the convergence properties of these series. A

conjecture based on the generalization of the eigenstate ther-

malization hypothesis suggests that generic closed periodi-

cally driven systems heat up in the thermodynamic limit, i.e.

they approach a completely structureless, infinite temperature

steady state [16–18]. The convergence of the expansions of

the effective Hamiltonian is intimately related to heating. Re-

cently upper bounds on heating had been reported in the linear

response regime [19] and for the Magnus expansion [20, 21],

with the central result that the heating is at least exponentially

suppressed in the driving frequency for periodically driven

models characterized by local Hamiltonians with bounded en-

ergy spectrum. This theoretical finding implies that one can

engineer nontrivial phases of matter, which remain stable for

the experimentally relevant timescales. In some situations

heating seems to be either absent completely or remain well

below exponential bounds [22–25]. Another recent theoretical

work showed that nontrivial non-equilibrium Floquet phases

can be stabilized by large driving amplitude [26] or by weak

coupling to environment [27].

One of the most studied driving protocols is a time-periodic

sequence of sudden quenches between different Hamiltoni-

FIG. 1. The replica expansion (solid lines) beats the traditional

Magnus (BCH) expansion (dashed lines) by several orders of mag-

nitude away from the narrow resonances at rational fractions of

π . The performance of the expansions is measured by the l2 dis-

tance of the exact (U) and the approximate time evolution operator

(U (n)= exp(−iH
(n)
F )) within a single time-period, in the kicked tilted

field Ising model defined in Eq. (7). In the top (bottom) panel the

magnetic field (Ising interaction) is considered as the periodic kick.

The orders are chosen such that for the matching colors the replica

expansion contains all the nested commutators appearing in the cor-

responding order of the BCH expansion. The curves were obtained

by exact diagonalization using the QuSpin package [28] on a sys-

tem of L = 16 sites and kick strength (a) h = 0.1 (b) J = 0.1. The

direction of the magnetic field is defined by cθ = 0.8, sθ = 0.6.

ans [24, 29, 30], which is interpreted as kicked dynamics if

one of the time intervals on which the Hamiltonians act is

much shorter than the other. Such protocols naturally appear

e.g. in the context of digital quantum simulation in trapped
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ions [31–33] and are frequently realized in other experimental

platforms (see e.g. Refs. [34, 35]).

In the present work a novel expansion for the effective

Floquet Hamiltonian is introduced for periodically kicked

systems, which clearly outperforms the traditional high fre-

quency expansions in a wide parameter range, as illustrated

using two examples shown in Figure 1. Our approach uses

the replica trick to calculate the logarithm of the time evolu-

tion operator describing a single period. The small parame-

ter is the kick strength and we do not assume high frequency

driving. The Magnus expansion is equivalent to the Baker-

Campbell-Hausdorff (BCH) series in periodically kicked sys-

tems, and the replica expansion can be thought of as an infinite

resummation of the BCH formula. As such, the possible appli-

cations of the replica expansion can reach far beyond periodi-

cally driven systems, including the theory of differential equa-

tions [13], Lie group theory [36], analysis of NMR experi-

ments [37] or estimation of Trotterization errors in various nu-

merical integration schemes. As an application of the replica

expansion, we establish a conjecture for a non-perturbative –

stretched exponential exp(−consth−1/2) in the kick strength

h – upper bound for the heating rate in the kicked tilted field

Ising model. Our conjecture supplements the bounds intro-

duced in Refs. [19–21], which address only the regime of high

frequency driving.

Kicked dynamics.— The effective Floquet Hamiltonian

evolving the kicked system is given by the logarithm of the

stroboscopic time evolution operator over one period U =
U0U1 = e−iJH0 e−ihH1 as

HF = i log(e−iJH0 e−ihH1) , (1)

where we incorporated the time intervals of the Hamiltonians

H0,1 to the coupling constants J,h. The BCH formula provides

a series expansion for HF assuming both J and h are small as

HF =JH0 + hH1 − iJh
1

2
[H0,H1]−

Jh
1

12
(J[H0, [H0,H1]]+ h[H1, [H1,H0]])+ . . . (2)

In the usual setup of kicked systems, where J ≫ h, that is, at

intermediate frequencies and weak kick strengths, the terms

with low order in H1 but high order in H0 are not negligible. A

series expansion in the small parameter of h could be obtained

formally by a resummation of the BCH series in H0. The first

order resummation is well known [24, 38],

HF = JH0 +
−iJadH0

e−iJadH0

e−iJadH0 − 1
hH1 +O(h2) (3)

where adX (Y ) = [X ,Y ] is the Lie derivative. However, to the

best knowledge of the authors, closed form expressions for the

infinite resummation in higher orders of H1 have not yet been

reported in the literature.

Replica expansion.— We tackle this problem by construct-

ing a series expansion in h in Eq. (1). Because of the noncom-

mutativity of H0 and H1, the higher order derivatives of the

logarithm of the time evolution operator cannot be obtained

easily. To circumvent this obstacle, we apply the replica trick

to express the logarithm,

logU = lim
ρ→0

1

ρ
(Uρ − 1). (4)

This idea has been proven to be uniquely useful in various

fields of science, such as in the statistical physics of spin

glasses [39], machine learning [40], and also in calculation of

the entanglement entropy [41]. Assuming that the replica limit

L (•) ≡ limρ→0
1
ρ (•) commutes with the differentiation, the

series expansion of the Floquet Hamiltonian in Eq. (1) reads

H
(n)
F =

n

∑
r=0

hrΓr , (5)

with Γ0 = JH0 and Γr = L
1
r!

∂ r
hUρ . The derivatives of the

powers of the time evolution are easy to calculate at integer

values of the replica index ρ , and the replica limit is taken

following an analytical continuation to arbitrary real values.

Algebraic and combinatorical manipulations lead to the Flo-

quet Hamiltonian expressed in terms of nested commutators

[42]:

Γ0 = JH0 (6a)

Γ1 = L ∑
0≤m<ρ

H̃m (6b)

Γr =
(−i)r−1

r!
L ∑
0≤m1≤...mr<ρ

[H̃mr , . . . [H̃m2
, H̃m1

]]]cm2...mr (6c)

where H̃m = U−m
0 H1Um

0 and cm2...mr =
(r−1)!

n0!n1!... . The expan-

sion can be constructed similarly for different initial phases

of the driving, U ′ = e−iJH0(1−ϕ)e−ihH1 e−iJH0ϕ = e−iH′
F , which

results in the same equations as Eq. (6) except for a simple

substitution H̃mi
→ H̃mi+ϕ . Our method provides a remark-

ably simple derivation of the known first order term in Eq. (3)

giving a certain degree of confidence in the replica expansion

(see [42]). Having established the first main result of this Let-

ter, we now demonstrate its performance in the example of the

kicked Ising model in a tilted field [23].

Kicked Ising model.— The time evolution is characterized

by time-periodic quenches between the Hamiltonians H0,1,

H0 = ∑
i

σ z
i σ z

i+1 (7a)

H1 = ∑
i

cθ σ x
i + sθ σ z

i , (7b)

where cθ and sθ are shorthand notations for cosθ and sin θ .

The purpose of introducing the tilt angle is to break the inte-

grability of the model at θ = 0 and π/2 [43]. Figure 1 shows

the performance of the replica expansion for the kicked Ising

model in two different limits: when the kick parameter is the

magnetic field h, or the Ising interaction J. The spectral norm

of the difference between the approximate and exact time evo-

lution operators, ∆n = ‖U −U (n)‖ shown in Figure 1, bounds
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the accuracy of the expansion for the dynamics of any ob-

servable A, as | 〈A〉(t)−〈A〉n (t)| ≤ 2t‖A‖∆n +O(∆2
n), where

〈A〉(t) (〈A〉n (t)) is the expectation value of the observable fol-

lowing t periods with respect to the exact (approximate) time

evolution, starting from an arbitrary initial state [44]. As the

two cases, kicking with H0 or H1, show qualitatively similar

behavior, we discuss here only the replica expansion for kick-

ing magnetic field.

The time evolution of kicking Hamiltonian H1 with respect

to unperturbed dynamics H0 for m periods reads explicitly

H̃m = ∑
i

sθ σ z
i − cθ

(1

2
sin(4mJ)(σ z

i−1σ y
i +σ y

i σ z
i+1)+

sin2(2mJ)σ z
i−1σ x

i σ z
i+1 − cos2(2mJ)σ x

i

)

, (8)

and is the main building block of the replica expansion. The

computation of the nested commutators of these objects is

trivial, following which one has to deal with the multiple sums

and the replica limit. It is convenient to separate the opera-

tor part of the expansion from the replica coefficients by ex-

pressing H̃m in Fourier harmonics as H̃m = O0 + ei4JmO1 +
e−i4JmO−1, where

O0 = ∑
i

sθ σ z
i +

cθ

2
(σ x

i −σ z
i σ x

i+1σ z
i+2) (9a)

O±1 = ∑
i

cθ

4
[σ x

i +σ z
i σ x

i+1σ z
i+2 ± i(σ z

i σ y
i+1 +σ y

i σ z
i+1)], (9b)

which brings us to the simplest formulation of the replica ex-

pansion,

Γ1 = ∑
x1

Rx1
Ox1

(10)

Γr =
(−i)r−1

r!
∑

x1,x2,...,xr

Rx1x2...xr [Oxr , . . . [Ox2
,Ox1

]] (11)

where xi ∈ {0,±1} and we introduced the replica sum

Rx1x2...xr = L ∑
0≤m1≤...mr<ρ

ei4Jm1x1 ei4Jm2x2 . . .ei4Jmrxr cm2...mr . (12)

These sums are evaluated gradually (with attention to the com-

binatorial factors) as

m j+1−1

∑
m j=0

m
y
je

iJ̃m j =
( ∂

i∂J̃

)y eiJ̃m j+1 − 1

eiJ̃ − 1
, (13)

with mr+1 = ρ , and J̃ is an integer multiple of 4J. The pref-

actor my, 0 ≤ y ∈ N may arise from the previous sum with

respect to m j−1, e.g. from the sum of constant terms. This

way of evaluating the sums already defines the analytical con-

tinuation to arbitrary real values of ρ , allowing one to take

the replica limit L . This analytical continuation leads to

L eiJ̃ρ − 1 = logeiJ̃ = iJ̃, which tries to enforce a Floquet

Hamiltonian continuous in J at a price of breaking the peri-

odicity HF(J) = HF(J + 2π). Alternatively, one can choose

a different branch of the logarithm, e.g. which folds J into

the interval (−π ,π ] by applying a different analytical contin-

uation [42]. This ambiguity in choosing the branch of the

logarithm can be potentially used to further improve the ex-

pansion, restore the periodicity in J and eliminate divergences

which are discussed below.

The sum is especially simple in the first order correction:

R0 = 0, R±1 = 2J(cot2J∓ i), yielding

Γ1 = ∑
i

a+σ x
i + a−σ z

i−1σ x
i σ z

i+1 + sθ σ z
i +

cθ J(σ z
i−1σ y

i +σ y
i σ z

i+1) (14)

with a± = cθ (J cot2J± 1/2).
The second order correction is written in a compact form

by noticing that O
†
±1 = O∓1 and R∗

x1,x2
= R−x1,−x2

,

Γ2 =
−i

2
{(R10 −R01)[O0,O1]+R1−1[O−1,O1]}+ h.c. (15)

The replica coefficients are evaluated as

R10 −R01 = (1− 2J cot2J)(1+ icot2J) (16)

R1−1 =
1

2
− i

sin4J− 4J

4sin2 2J
, (17)

which finally yields

Γ2 =∑
i

cθ a−(σ
y
i σ x

i+1σ z
i+2 +σ z

i σ x
i+1σ y

i+2)−

sθ a−[σ
y
i +σ z

i σ y
i+1σ z

i+2 + cot2J(σ x
i σ z

i+1 +σ z
i σ x

i+1)]+

(b+ c)σ z
i σ x

i+1σ x
i+2σ z

i+1 − bσ y
i σ y

i+1 − cσ z
i σ z

i+1 . (18)

The coefficients are b =
c2

θ
8

4J cos4J−sin 4J

sin2 4J
and c =

c2
θ
4

4J−sin 4J

sin2 4J
.

The higher order corrections can be calculated similarly [42].

Resonances.— Notice that the first order correction di-

verges near Jk,1 = kπ/2, which was identified as a signal of a

heating (or nonergodicity–ergodicity) transition in a different

spin model [24], similar to the divergence of high-temperature

expansion signaling phase transition in statistical physics. The

source of this divergence is easily identified as the zero of

the denominator in Eq. (13). Similar to the high frequency

expansion, the higher order corrections become less and less

local due to the increasing number of commutators. The de-

gree of divergence at Jk,1 also increases with the order, as the

denominators from the consecutive sums become multiplied,

and it can also increase because of the derivative in Eq. (13),

leading to a divergence ∼ |J − kπ/2|−r at the rth order of ex-

pansion. Additional lower order divergences may appear at

Jk,m = kπ/2m, m = 1 . . .r. Consider e.g. the replica sum

R11 = 2J(cot4J− i) appearing in the second order expansion,

which diverges at Jk,2 = kπ/4. Many of these possible diver-

gences do not enter the expansion because of the vanishing

commutators in the operator part or due to cancellations, e.g.

[O1,O1] = 0, [O1, [O1,O0]] = 0, etc. For instance, the diver-

gence at kπ/4 only appears at the 5th order of the expansion,

see Figure 1. In spite of the cancellations we conjecture that
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in the thermodynamic limit new divergences keep appearing

in increasing orders similar to the dual case with interaction

kicks (Figure 1(b)), and the expansion blows up near every

rational fraction of π/2 (similar to KAM series). In contrast,

we find that finite-size systems are characterized by a finite

set of resonances {Jk,m1
, . . .Jk,mmax

}, where mmax ∼ L. For in-

stance, the replica expansion of a two-level system (e.g. a

single kicked spin) has a single divergence at Jk,m1
= kπ , and

no singularities appear at rational fractions.

The stationary expectation value of few-body operators do

not show any signature of transition at these resonances in

finite-size systems, and it is not clear if these resonances are

just an artifact of the expansion, or they herald some hidden

physical effect. The divergences restrict the applicability of

the replica method to non-resonant frequencies. As shown in

Figure 1, at low orders, it can provide an accurate estimate of

the Floquet Hamiltonian for an extended range of frequencies,

while increasing orders lead to more accurate results inside

a narrower domain. That is, given a fixed J, similar to the

method introduced in Ref. [20], one can introduce an optimal

order of expansion n∗, up to which the corrections increase the

accuracy of the approximation of the Floquet Hamiltonian.

Bound on heating.— It is natural to assume that the width of

the resonances is proportional to the small parameter h, which

is further supported by the analysis of the magnitude of the

corrections Γr [45]. As an illustration, we give the scaling of

the Hilbert-Schmidt norm ‖Γr‖HS =
√

TrΓ†
r Γr ∼ f r

J (J−π/4)
near the resonance π/4,

f r
π/4(δJ) =

cπ/4(r)

δJr−4
+O(δJ−(r−5)) . (19)

The r dependence of the prefactor is illustrated in [42]. Up

to the highest order we had access to, we found cJ(r) to de-

crease with r. For our purposes it is enough to assume that it

grows at most exponentially . αr, and we expect that at high

orders this exponential growth indeed appears as the asymp-

tote of cJ(r). Then the series ∑r ‖Γr‖hr diverges for δJ < αh,

which gives the width of the resonances. The optimal order

of the expansion is hence estimated by the maximal order at

which the closest resonance is located further than ∼ αh. As

the resonances appear at the rational fractions of π/2, J = kπ
2m

,

where m = 1, . . . ,n at the nth order of the expansion, the ques-

tion is how far one can get in the expansion without having a

resonance approaching a fixed J.

Rational approximation of irrational numbers has been

thoroughly studied in the mathematical literature [46], and is

the cornerstone of the KAM theorem in classical dynamical

systems, where the stability of the (quasi)periodic motion to

integrability-breaking perturbations depends on the irrational-

ity of the corresponding frequencies. The irrationality of a

number is defined by how difficult it is to approximate by ra-

tional numbers. The number x is of type (K,ν) if it satisfies

|x − p/q| > Kq−ν for all integer pairs (p,q) [47]. For ex-

ample, the most irrational number in this sense is the golden

ratio, which is of type (1/
√

5,2). Such badly approximable

numbers are generic in the sense that for any ν > 2, almost all

irrational numbers x are of type (K,ν) for some K [46, 47].

In the following we choose a J for which 2J
π is of type (K,ν),

such that
∣

∣

∣

∣

J− kπ

2m

∣

∣

∣

∣

=
π

2

∣

∣

∣

∣

2J

π
− k

m

∣

∣

∣

∣

>
π

2

K

mν
. (20)

Hence J is not affected by any resonances as long as n < n∗

n∗ =

(

πK

2αh

) 1
ν

, (21)

which we set as the optimal order of expansion. By the con-

struction of the expansion,

‖U − e−iH
(n)
F ‖ ∼ hn+1 , (22)

which gives

‖U − e−iH
(n∗)
F ‖ ∼ hn∗+1 ∼ h

C

h1/ν . e
− C′

h1/2−ε (23)

at the optimal order with some constants C, C′ and arbitrary

ε > 0, by choosing ν close enough to 2. Consequently, the

Floquet Hamiltonian in the optimal order is conserved for

stretched exponentially long time in the inverse kick strength,

and, if the steady state is the infinite temperature ensemble,

it is approached at least stretched exponentially slowly. We

remark that this bound is not sharp, and our analysis does not

rule out the possibility of absence of heating in the model.

We also stress that the resonances in the replica expansion do

not imply heating, but the breakdown of the expansion, which

leads to an upper bound on heating. This bound could pos-

sibly be improved by a resummation with better convergence

properties. We have given an estimate for the accuracy of the

replica expansion. We leave a more rigorous mathematical

analysis, similar to the ones in Refs. [20, 21], to future work.

Further applications.— It is straightforward to apply the

replica expansion not only to spin models but to fermionic or

bosonic models as well. An example of a kicked harmonic os-

cillator is given in the supplemental material [42]. Although

we constructed the replica expansion for quantum mechani-

cal systems, similar to the BCH expansion, it can be read-

ily applied to classical systems [38] either by using Hamilto-

nian vector fields, or by taking the classical limit of the quan-

tum effective Hamiltonian. We compare our expansion to the

Birkhoff normal form [48], which, similar to the replica ex-

pansion, produces an approximate constant of motion pertur-

batively in the kick strength [49]. We find that the classical

limit of the replica expansion reproduces the Birkhoff normal

form Hamiltonian. The higher order resonances hence are not

just an arifact of the replica expansion, but they appear in a

classical calculation without any reference to the replica trick.

Conclusion.— We have developed a novel expansion ap-

plicable to periodically driven systems where the driving con-

sists of sudden quenches between different Hamiltonians. The

expansion takes into account all orders in one of the Hamil-

tonians and is perturbative in the other. As such, it is an in-

finite resummation of the BCH formula, whose coefficients
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can be reproduced by taking the derivatives of the terms in the

replica expansion [42]. We demonstrated that, similar to the

high frequency expansions, the replica expansion is asymp-

totic for systems with unbounded Hamilton operators, that is,

it may not converge, but performs very well when evaluated

at an optimal order. In infinite systems the expansion suffers

from resonances near rational frequencies, whose avoidance

determines the optimal order of expansion, whereas in finite

systems the resonances remain sparse, leading to better con-

vergence properties. It is an interesting question whether these

resonances have a physical meaning, and whether one could

remove the resonances by a proper choice of analytical con-

tinuation in the replica trick. Similar structure of resonances

appear in classical chaotic systems, which demonstrate the

potential of our approach towards buildiing a quantum KAM

theory.
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