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Many real-world systems are characterized by stochastic dynamical rules where a complex network of in-
teractions among individual elements probabilistically determines their state. Even with full knowledge of the
network structure and of the stochastic rules, the ability to predict system configurations is generally charac-
terized by large uncertainty. Selecting a fraction of the nodes and observing their state may help to reduce the
uncertainty about the unobserved nodes. However, choosing these points of observation in an optimal way is a
highly nontrivial task, depending on the nature of the stochastic process and on the structure of the underlying
interaction pattern. In this paper, we introduce a computationally efficient algorithm to determine quasi-optimal
solutions to the problem. The method leverages network sparsity to reduce computational complexity from ex-
ponential to almost quadratic, thus allowing the straightforward application of the method to mid-to-large-size
systems. Although the method is exact only for equilibrium stochastic processes defined on trees, it turns out to
be effective also for out-of-equilibrium processes on sparse loopy networks.

Stochastic phenomena are studied in any field of sci-
ence, including biology [1], ecology [2], physics [3], neu-
roscience [4], and finance [5]. In a stochastic system com-
posed of multiple elements, the states of the elements obey
probabilistic rules that depend on the states of other elements.
Often, a sparse network describes how elements interact one
with the other [6]. Consider flu spreading for example. The
epidemics starts from a few initial seeds. A person not immu-
nized can contract the disease with a certain probability only
if in contact with an infected individual. At the same time, in-
fected people can spontaneously recover. The social network
underlying the spreading process determines how the state of
every individual depends on the others. At any given time,
the system is characterized by some uncertainty, in the sense
that different configurations have a non-vanishing probability
to appear. Such an uncertainty is due to the stochasticity of
the process, and it is present regardless of the knowledge pos-
sessed about the probabilistic dynamical rules and about the
contact pattern.

To reduce uncertainty, one can observe the state of a sam-
ple of elements. In the example of flu spreading, this means
obtaining full knowledge about the health state of some peo-
ple. With such a knowledge, the prediction of the state of
unobserved elements becomes less uncertain. In particular,
the larger the sample, the lower the uncertainty, with the lim-
iting case of null uncertainty when the entire system is ob-
served. Resource constraints make complete observation usu-
ally impossible. Is there an efficient way of identifying the
best elements to observe so that the uncertainty for the rest
of system is minimized? The question is answered, from an
information-theoretic point of view, by the principle of max-
imum entropy sampling (MES) [7]. Its rationale is intuitive:
to reduce uncertainty about the system as much as possible,
the elements for which joint uncertainty is maximal must be
observed. MES is often used as a solution to problems of ex-
perimental design [8]. An example is the problem of where
to place thermometers in a room to provide the most accu-
rate picture of the temperature in the entire room [9]. In spe-

cial settings, MES can be efficiently approximated or achieved
exactly with ad-hoc algorithms [10–12], These studies have,
however, considered very small systems because the computa-
tional complexity of the proposed algorithms grows exponen-
tially. Further, the problem has been studied only in regular
topologies, such as lattices or fully connected networks. The
present paper considers the MES problem when the interac-
tion pattern is given by a large complex network. In this case,
the sparsity of the topology can be leveraged to make the ap-
plication of MES feasible in rather large systems.

To avoid any potential confusion, we stress that our goal
is the selection of a fraction of observed nodes in order to
minimize the uncertainty on the stochastic variables associ-
ated with unobserved nodes. This is distinct from the prob-
lem of optimally sampling a network to reduce uncertainty
on its unknown properties (e.g., degree distribution, diameter,
size) [13, 14]. Also, our problem is different from active learn-
ing in networks [15–17], where the goal is to infer a model
able to predict the value of the unobserved variables in a spe-
cific configuration of the system. In our case, we do not infer
parameter models. Further, we are not interested in making
predictions about a specific configuration. Instead, for all pos-
sible configurations that the system may exhibit, we want to
identify what nodes we need to observe in order to minimize
our uncertainty about such configurations. In this respect, our
problem is similar to the one studied in Ref. [18], with the dif-
ference that we deal with stochastic rather than deterministic
systems.

We consider a dynamical stochastic process defined on a
graph �, composed of N nodes. Every node i ∈ � is char-
acterized by a state variable xi that can assume K distinct val-
ues; x = (x1, x2, . . . , xN) corresponds to a specific microscopic
configuration of the system. We assume that the process is
Markovian and that the change of the state of a single node is
determined only by local interactions with the nodes directly
connected to it. Hence, the graph � fully determines how
microscopic configurations are related one to the other. Let
us indicate with p(x) the stationary probability distribution
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associated to each of the KN possible microscopic configu-
rations that the system can assume. Despite full knowledge
of the graph structure and of the stochastic process, we are
still left with potentially large uncertainty quantified by the
information-theoretic joint entropy

H(�) = −
∑

x
p(x) log2[p(x)] . (1)

Suppose we can observe a subset of nodes � ⊆ �. Observ-
ing these nodes removes any uncertainty on their state, and
thus conditions the joint probability distribution of the unob-
served part of the graph, � \ �, to the state of the observed
nodes �, namely p(xu1 , . . . , xuN−O |xo1 , . . . , xoO ) = p(x�\�|x�),
where u1, . . . , uN−O ∈ � \ �, o1, . . . , oO ∈ �, and we defined
x�\� = (xu1 , . . . , xuN−O ) and x� = (xo1 , . . . , xoO ). For a partic-
ular choice of the set �, the uncertainty about the rest of the
system is quantified by the conditional entropy

H(� \ �|�) = −
∑
x�

p(x�)
∑
x�\�

p(x�\�|x�) log2[p(x�\�|x�)] .

(2)
For � = ∅, Eq. (2) is identical to Eq. (1). For � = �, we have
insteadH(� \ �|�) = H(∅) = 0.

We look for the optimal selection of a number O of nodes
such that their observation minimizes the conditional entropy
of Eq. (2). In particular, since H(� \ �|�) = H(�) − H(�),
the minimization of Eq. (2) is equivalent to finding the group
of nodes �∗ having maximum joint entropy, i.e.,

�
∗ = arg max

�
H(�) , (3)

where H(�) = −
∑

x� p(x�) log2[p(x�)]. The maximization
is performed over all sets � of fixed size O. This principle is
known as MES, and the associated problem is NP-hard [7].
The exact solution of this optimization requires the consider-
ation of all possible choices of the set �, and for each of them
the computation of the associated joint entropy. The computa-
tional complexity of both operations scales exponentially with
O.

A quasi-optimal solution can be obtained at a reduced com-
putational cost, exploiting the sub-modularity of the entropy
function [19]. Such a property allows us to implement a
greedy strategy, where the set of observed nodes is built se-
quentially, leading to a solution provably close to the opti-
mum [20]. The greedy strategy provides a solution corre-
sponding to a value of the function to be optimized that is
at least (1− 1/e) = 0.63 . . . times the value of the global max-
imum [20]. In the present context, the greedy algorithm con-
sists in sequentially adding, to the set of observed nodes, the
node with maximal entropy conditioned to the set of variables
already observed. More specifically, the algorithm starts at
stage t = 0 with an empty set, �t=0 = ∅. The t-th point of ob-
servation, namely ot, is chosen, among the nodes not yet part
of the observed set �t−1 = {o1, o2, . . . , ot−1}, according to the
rule

ot = arg max
i<�t−1

H(i|o1, . . . , ot−1) . (4)

The algorithm can be run up to arbitrary values 1 ≤ t ≤ N.
This procedure addresses the issue of the extensive search
over all possible groups of nodes. However, at every stage
t, the computation of each of the N − (t − 1) conditional en-
tropies in Eq. (4) still requires a number of operations scaling
as Kt. This makes the algorithm usable only for constructing
very small sets of observed nodes.

To make the greedy algorithm applicable to large sets, one
must introduce approximations to reduce the computational
complexity of the calculation of H in Eq. (4). The simplest
and most popular ansatz in the study of processes on networks
is the so-called individual-based mean-field (IBMF) approxi-
mation [21], according to which the joint distribution p(x) is
seen as the product of the marginal probabilities of the individ-
ual nodes, i.e., p(x1, x2, . . . , xN) = p(x1)p(x2) · · · p(xN). The
approximation allows us to write the entropy of any set � of
variables as

Hind(�) =
∑
o∈�

H(o) , (5)

whereH(o) is the unconditional entropy of the node o. Under
this approximation, the optimal set �ind corresponds to the O
nodes with maximal unconditional entropy.

In this paper, we propose a refined approximation, much
less drastic than the IBMF approach, based on two assump-
tions. First, we assume that the graph � fully determines
dependencies among variables. If the pair of nodes i and j
is connected by an edge, then the variables xi and x j are di-
rectly dependent one on the other. Otherwise, the variables
still depend one on the other but only through at least another
variable in the system. This seems a reasonable way of im-
proving the IBMF approximation, as we expect that the most
important dependencies are present among pairs of variables
with a direct interaction. This assumption is exact for equilib-
rium configurations of processes with rates depending on the
states of direct neighbors and satisfying detailed balance [22].
Second, we assume that the graph � is a tree. Both assump-
tions are used in our proposed algorithm, that allows us to
efficiently compute the entropy, namelyHpair(�), for an arbi-
trary subset of variables � [and, as a consequence, the con-
ditional entropies in Eq. (4)]. If the set � coincides with the
entire graph, then the algorithm is equivalent to the one used to
compute the Bethe free-entropy on trees [23]. The algorithm
works sequentially, in the sense that the function Hpair(�) is
computed by iteratively adding single nodes to the set �. This
allows us to use the algorithm directly in the greedy maxi-
mization of Eq. (4).

Properties of the entropy function alone allow us to write
the inequality

H(�) ≤ Hpair(�) ≤ Hind(�) (6)

for any � ⊆ �. Essentially, our approximation always leads
to an upper-bound of the true entropy function that is tighter
than the one predicted using the standard IBMF approxima-
tion. The approximation is exact, i.e.,H(�) ≡ Hpair(�), only
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in the case of equilibrium distributions of systems satisfying
detailed balance on a tree.

Suppose we are at stage t of the algorithm. We need to
compute the conditional entropy Hpair(ot |o1, . . . , ot−1) for the
next node ot that we are adding to the set. Thanks to Bayes
rule, we can write

Hpair(ot |o1, . . . , ot−1) = H(ot) +Hpair(o1, . . . , ot−1|ot)
−Hpair(o1, . . . , ot−1) .

(7)
Under our two main assumptions, the second term can be writ-
ten [24], as the sum of pairwise conditional entropies, one per
observed node

Hpair(o1, . . . , ot−1|ot) =

t−1∑
j=1

H(o j|so j ). (8)

Every observed node corresponds to a term in the sum, given
by the entropy associated with that observed node, o j, con-
ditioned to another node so j ∈ (�t \ {o j}). Such a node so j

is either the first observed node encountered along the unique
path connecting o j to ot, or node ot itself. Finally, thanks to
the chain rule, the rightmost term in Eq. (7) can be expressed
in terms of quantities computed at previous stages

Hpair(o1, . . . , ot−1) = Hpair(ot−1|o1, . . . , ot−2)+
Hpair(o1, . . . , ot−2) . (9)

If the graph is not a tree, the algorithm is still applicable
as long as the structure is sufficiently treelike. Many real-
world networks satisfy this condition [6], and, very often, tree-
like approximations are effective even if the graphs are not
treelike [34]. In our proposal, if the graph contains loops,
Hpair(o1, . . . , ot−1|ot) is computed under the tree assumption
by generating a spanning tree rooted in ot, and using again
Eq. (8). This provides us with an upper-bound of the true en-
tropy, since neglecting dependencies necessarily leads to an
entropy larger than its true value. The rooted tree can be gen-
erated arbitrarily. However, to keep the upper-bound as tight
as possible, we use a Djikstra-like algorithm suitably modified
for this context [24]. Results presented here are based on this
choice.

The algorithm requires prior knowledge of the uncondi-
tional entropy of individual nodes, and of the pairwise entropy
among pairs of nodes. From a computational point of view,
the running time scales as N3 in the worst-case scenario [24].
However, some computational tricks allow for a great reduc-
tion of the complexity of the MES algorithm [19, 35], which
effectively scales as N2 log(N) [24]. This makes the algorithm
easily applicable even to relatively large systems.

To validate the algorithm, we consider four different pro-
cesses: i) the Ising model [36]; ii) the Modified version of
the Susceptible-Infected-Susceptible (MSIS) model as pro-
posed in Ref. [37]; iii) the standard version of the Susceptible-
Infected-Susceptible (SIS) model [21]; iv) the Independent
Cascade (IC) model [38]. The first two models satisfy detailed
balance. The standard versions of the SIS and IC models are

instead prototypical examples of out-of-equilibrium processes
that don’t satify detailed balance. We analyze the behavior
of all models for different parameter values and on different
network substrates, including synthetic graphs and real-world
networks. Results and details of our systematic analysis are
reported in [24].
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Figure 1. Ising model on the US air transportation network. a) Mag-
netization m as a function of the temperature 1/β. b) Joint entropy of
the observed set as a function of the set size. Here 1/β = 1. Sampling
techniques considered are: i) MES (red full line); ii) MES under the
IBMF approximation (black dashed line); iii) random sampling, i.e.,
nodes are added to the observed set in random order (blue dotted
line). For all sampling techniques, joint entropy is measured using
the novel approximation. We plot also the joint entropy according to
the IBMF approximation for the set �ind (thick green line). c) Same
as in panel b, but for 1/β = 15. d) Same as in panels b, but for
1/β = 50.

In Fig. 1 we show results for the Ising model applied to
the US air transportation network (size N = 500) originally
considered in [39]. The network contains loops, so that our
approximation is not exact. We sample configurations reached
by the system after a sufficiently long number of iterations of
the Metropolis algorithm with fixed value of the temperature
1/β and external magnetic field h = 1/N. Every realization is
obtained after 1, 000 N total spin flips. The phase diagram of
the system is presented in Fig. 1a, showing the typical transi-
tion from ordered to disordered configurations as the tempera-
ture is increased. We first analyze statistical properties of mi-
croscopic configurations obtained at 1/β = 1 in Fig. 1b. To es-
timate the unconditional entropyH(i) of a generic node i, and
the pairwise conditional entropyH( j|i) of a generic pair (i, j),
we rely on T = 1, 000 sampled configurations. In addition to
�pairand�ind, we consider also the set of observed nodes�rng,
built by adding nodes in random order. As the figure clearly
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shows, our approximation generates noticeable improvements
with respect to the the IBMF approximation in the computa-
tion of the entropy of subsets of the system. This is apparent
from the large value of the differenceHind(�ind)−Hpair(�ind).
Concerning different sampling strategies, we also see a sig-
nificant benefit from using our proposed technique over the
naive version of MES. Hpair(�pair) grows much quicker than
Hpair(�ind), and saturates at the maximum value after about
200 nodes are observed. This is an indication that the en-
tire uncertainty of the system can be explained by looking
at a fraction of the nodes in the network only. On the con-
trary,Hpair(�ind) behaves very similarly to, if not worse than,
Hpair(�rng) testifying that the naive MES strategy is not ef-
fective in this specific system. As the temperature increases
(Fig. 1c), the advantage of using our new approximation in
place of the IBMF approximation becomes less apparent. At
the same time, the benefit of using our greedy MES strategy
compared to the naive version becomes less evident. For very
large temperatures, all curves become identical (Fig. 1d).
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Figure 2. Independent cascade model on the US air transportation
network. a) Relative size of the outbreak R as a function of the in-
fection probability p. Panels b, c, and refer respectively to p = 0.1,
p = 0.2, and p = 0.5. The description of the curves in these panels is
identical to one of the curves appearing in Fig. 1.

In Fig. 2, we study the IC model applied to the same real-
world network. We focus on microscopic configurations cor-
responding to the final stage of the dynamics, where nodes are
either in the susceptible or recovered state. The initial condi-
tion of the dynamics is given by all nodes in the susceptible
state, except for a single randomly chosen seed in the infected
state. Infections propagate along each active edge with prob-
ability p. For every value of p, we consider T = 100, 000
sampled configurations. In the IC model on a loopy graph,
both assumptions at the basis of our approach are violated.

Nonetheless, the results reveal that our approximation repre-
sents a significant improvement over the basic IBMF approx-
imation. First, we are able to provide estimates of the entropy
of the system that are radically smaller, showing that pairwise
correlations among variables are particularly significant in the
system. Second, we are able to construct sets of observed
nodes that are more representative for system uncertainty than
those obtained by using the other sampling strategies.

To further strengthen our message, in [24] we include a
comparison of the performance between our greedy algorithm
for MES and other selection strategies: (i) degree centrality
sampling, where nodes are added in decreasing (increasing)
order based on their degree; (ii) closeness centrality sampling,
the same as (i) but with node ranking based on closeness cen-
trality. These strategies are chosen to test the performance
of centrality-based metrics that rely on topological properties
only. The most significant difference between them is that de-
gree is a local metric, whereas closeness is global. We find
that topological heuristics are not always reliable sampling
strategies, and that their effectiveness is seriously affected by
the underlying network structure and/or the parameter values
of the stochastic models. Further in [24], we study analyti-
cally the behavior of the IC model in star networks and show
that the choice of the best nodes to observe is highly sensitive
not only to the parameter of the model, but also to the initial
configuration of the stochastic dynamical process.

In summary, we introduce an algorithm to approximate the
conditional entropy of a sample of nodes in a complex net-
work. The algorithm relies on the sparsity of the graph to
simplify computations otherwise unfeasible. Although the al-
gorithm allows us to compute the conditional entropy of ar-
bitrary node sets, it finds a particularly interesting application
in the greedy approximation of the so-called MES principle.
This principle corresponds to the optimal reduction of uncer-
tainty of a stochastic process taking place on a network. Com-
bining our algorithm with machine learning methods to create
active supervised learning approaches is a potentially interest-
ing direction for future investigation. Other extensions worth
of consideration are also the generalization of our algorithm
to devise computationally feasible selection strategies based
on other information-theoretic principles, as for example the
maximization of the mutual information rather than entropy.
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