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The nanometer scale lattice deformation brought about by the dopants in high temperature superconducting
cuprate La2−xSrxCuO4(x=0.08) was investigated by measuring the associated X-ray diffuse scattering around
multiple Bragg peaks. A characteristic diffuse scattering pattern was observed, which can be well described by
continuum elastic theory. With the fitted dipole force parameters, the acoustic type lattice deformation pattern
was re-constructed and found to be of similar size to lattice thermal vibration at 7 K. Our results address the
long-term concern of dopant introduced local lattice inhomogeneity, and show that the associated nanometer
scale lattice deformation is marginal and cannot, alone, be responsible for the patched variation in the spectral
gaps observed with scanning tunneling microscopy in the cuprates.

PACS numbers:

Many transition metal oxides with strong electron correla-
tions are electronically inhomogeneous[1], including the su-
perconducting cuprates[2–8]. The scanning tunneling mi-
croscopy (STM) studies on different cuprate families revealed
remarkable nanoscale variations in their essential electron
spectral features, including the pseudogap[2, 9, 10] and the su-
perconducting gap[11, 12]. Although earlier theoretical work
proposed spontaneous electronic phase separation[13], exper-
imental evidences established the correlation between the ob-
served nanoscale electronic variations and the distribution of
the dopants[9, 10, 14]. In addition to contributing carriers to
the CuO2 planes, the dopants inherently introduce disorders to
the systems which perturb the local electronic structure. Such
perturbation to the electronic structure from the disorder is
more recently discussed in the context of charge density wave
formation in the cuprates[15, 16]. In general, a dopant can in-
troduce perturbations of a few kinds: a local dopant potential,
intra-unitcell atomic distortion, and the associated nanometer
scale strain[9]. Which is the leading local variable in creating
the nanoscale electronic inhomogeneity remains an issue to be
explored.

Most of the theoretical work[17–21] has been focused on
the local potentials associated with the dopant atoms. With
either phenomenologically assigned screening lengths or just
single site impurity potentials, the nanoscale variations in
carrier density and pairing strength can be reproduced. In
the meantime, the local impact of the dopants to the lattice
was also explored with extended X-ray absorption fine struc-
ture (EXAFS) technique[22–24], which revealed significant
atomic deformation near the dopants. On the other hand,
such deformation happens within just a few angstroms. It re-
mains unclear how to relate such very local deformation to
the nanoscale electronic inhomogeneity observed. In addi-

tion to the very strong deformation of the atoms nearest to the
dopants, such lattice response will propagate away from the
dopant center to form long range strain. The impact of strain
on the superconductivity in the cuprates has long been noticed
by pressure experiments[25] where Tc was tuned on the or-
der of 1K/GPa, and showed strong anisotropic behaviors[26].
Thus, the dopant-induced local lattice strain, depending on its
strength, potentially can be the source of the observed inho-
mogeneity.

As a perturbation to the ideal periodic lattice, the local
strain extended from the dopants manifests itself as diffuse
tails from the Bragg points in the X-ray scattering measure-
ments, known as “Huang diffuse scattering”(HDS)[27, 28].
Although most of the STM work has been performed on
Bi2Sr2CaCu2O8+δ , this cuprate family is not suitable for
HDS measurements because its reciprocal space is over-
whelmed by the superstructure modulation satellites[29],
leaving separation of the scattering signal from the strain dif-
ficult. Instead, underdoped La2−xSrxCuO4 with a relatively
simpler structure was chosen, where the nanoscale electronic
inhomogeneities were also reported[6, 7]. Clear HDS pat-
terns due to the lattice strain associated with the randomly
distributed Sr dopants were observed. Interestingly, the scat-
tering strength of the lattice deformation from such strain is
comparable to the thermal diffuse scattering at the low tem-
perature of 7 K, indicating that the size of the dopant induced
strain is small. From the reconstructed strain pattern based
on continuum elastic theory[28], we conclude that the lattice
deformation is of the order of 0.001Å. Although extended to
nanometer scale, such small strain is unlikely to be the lead-
ing local variable in creating the startling nanoscale electronic
inhomogeneity observed with STM.

Underdoped La2−xSrxCuO4(x=0.08) crystals were grown
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by the traveling-solvent floating-zone technique. This doping
level is specifically chosen such that the samples have the min-
imum doping to be in the superconducting phase, but largely
avoiding overlapping of the strain field associate with indi-
vidual dopants. Single crystals were oriented, cut, and pol-
ished to a thickness of 0.4 mm with a facet of 2 X 4 mm2.
To remove the stress formed during sample preparation, the
samples were annealed in oxygen flow (825 °C for 24 h and
then 500 °C for 20 h with one atm pressure). From SQUID
magnetization measurements, Tc was found to be 21.1K with
the transition width ∆T to be less than 1K, indicating high
sample quality. X-ray Scattering studies were performed on
the 4-ID-D beamline at the Advanced Photon Source (APS).
A Si(111) double-crystal monochromator was used to select
20keV x-rays. A pair of Pd-coated mirrors was used to de-
liver a focused beam on the sample. NaI scintillator was used
as a point detector. The crystal axes (a, b, c) and the recipro-
cal space Miller indices [HKL] (given in the reciprocal lattice
units (r.l.u.)) are defined with the low temperature orthorhom-
bic structure. Data presented was collected at 7 K unless men-
tioned otherwise.

La1.92Sr0.08CuO4 undergoes a high temperature tetragonal
to low temperature orthorhombic structure phase transition at
∼ 280 K[30], and forms twinned domains at low temperature.
Indeed, Bragg peak splitting due to the twinned domains was
observed on our sample with large X-ray beam spot size. By
narrowing down the X-ray beam spot size to be about 0.1X0.2
mm2 and translating the sample, we managed to perform the
measurements on a single domain crystal grain with negligi-
ble direction confusion about a-b axes and the domain aver-
aging effect. As a result, the observed diffuse scattering pat-
tern shown in Fig. 1 is highly anisotropic along H and K di-
rections, reflecting the low temperature orthorhombic Bmab
symmetry.

Fig. 1(a-c) show the X-ray diffuse scattering intensity map-
pings for different planes in the reciprocal space around differ-
ent Bragg peaks. Unlike the thermal diffuse scattering (TDS)
which is expected to be more rounded[31], the observed dif-
fuse scattering pattern show pronounced ridges and valleys,
characteristic for HDS. To quantitatively analyze the mea-
sured X-ray diffuse scattering patterns, we follow the theory
developed by M. A. Krivoglaz and P. H. Dederichs[28] for X-
ray diffuse scattering from local lattice strains associated with
randomly distributed point defects. As the elastic continuum
approximation is employed, the details within a unit cell are
ignored, and the deformation is in the form of unit cell mass
center motion. The HDS around the Bragg point, ~G, can be
written as,

IHDS( ~Q) = Nc(1− c)|F (~G)|2(
Q

q
)2| 1

Vc

∑
i,j,l

Q̂ig̃ijPjlq̂l|2

(1)
where N is the number of unit cells and c is the doping con-
centration. F (~G) is the unit cell structure factor at the Bragg
point ~G. ~q is defined as ~q = ~Q − ~G, the reduced vector from
Bragg center. Q̂i and q̂l are the components of the unit vec-

L 
(r.

l.u
.)

(a)

21.8

21.9

22

22.1

22.2

L 
(r.

l.u
.)

H (r.l.u.)

(d)

−0.2 −0.1 0 0.1 0.2

21.8

21.9

22

22.1

22.2

(b)

K (r.l.u.)

(e)

−0.2 −0.1 0 0.1 0.2

(c)

H (r.l.u.)

(f)

 

 

1.8 1.9 2 2.1 2.2

1000 3500 6000 8500 11000

FIG. 1: Diffuse scattering pattern around (0 0 22) and (2 0 22) Bragg
peaks. a-c: experimental data in the H-L (K=0) and K-L (H=0)
planes, a-b are around (0 0 22) and c is around (2 0 22). Diago-
nal dashed lines are along the ridges of HDS. d-f: calculated diffuse
scattering pattern with both HDS and TDS contributions. The param-
eters to generate HDS are from our fitting results. Data were taken at
∼ 7 K.

tors along ~Q and ~q directions. g̃ij is the inverse of the tensor∑
k,l Cikjlqkql/q

2 with Cikjl to be the elastic constant. The
impact from the defect to its surrounding lattice is contained
in the Pjl matrix named as “dipole tensor”[28], which essen-
tially governs the overall HDS pattern.

The diffuse scattering around the Bragg point ~G also con-
tains contribution from lattice thermal vibrations[32]. With
acoustic approximation, the TDS can be written as,

ITDS(Q) =
N~
2M
|F (~G)|2

∑
j

[ ~Q · ẽj(~q)]2

ωj(~q)
coth(

~ωj(~q)
2KBT

)

(2)
where M is the unit cell mass and j is the index of acoustic
branches. ẽj(~q) and ωj(~q) are the eigenvectors and eigenfre-
quencies of the acoustic phonon modes, evaluated from the
elastic dynamical matrix.

For a fixed direction of the reduced vector from the Bragg
center, Eqn.(1) shows that the HDS follows a general |q| de-
pendence as 1/qν with ν = 2. For TDS, the |q| dependence
is temperature dependent. ν is close to 2 at high temperature
and approaches 1 when ~ωj(~q)

2KBT
� 1 at low temperature. To

examine the |q| dependence of our diffuse scattering intensity,
diagonal cuts in the H-L (K=0) and K-L (H=0) planes from
(0 0 22) center Bragg peak on the intensity ridges (shown as
dashed lines in Fig. 1(a-b)) were taken and shown in log-log
scale in Fig.(2). At low |q| region, the intensity shows nicely
a 1/qν dependence with ν = 1.9. The small deviation from 2
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is expected due to TDS contributions. In the large |q| region
where ~ωj(~q)

2KBT
� 1 is satisfied, the diffuse scattering intensity

starts to bend up towards ν = 1 as the TDS becomes domi-
nating. Such |q| dependence agrees well with the predictions
from Eqn.(1) and (2), and justify the elastic continuum ap-
proximation treatment.
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FIG. 2: (a): diagonal cuts from (0 0 22) peak on the ridges of the
diffuse scattering pattern as shown in Fig. 1(a) and (b). Solid lines
are exponential of q as 1/q1.9. (b)-(e): line cuts near (0 0 22) Bragg
peak. Solid lines are the overall fitting results, and the dashed red
lines are the TDS components. The sharp central peaks in (b) and
(c) are from the crystal truncation rods due to c-direction terminated
surface.

With both HDS and TDS contributions included, we fitted
the total diffuse scattering around different Bragg peaks with
the Pjl dipole tensor as the fitting parameter. The existence of
TDS actually helps our quantitative analysis in the sense that
it serves as a built-in reference to the HDS. Since the TDS is
completely determined by the temperature and the dynamic
matrix which has been already determined[33], the Pjl can
be determined on an absolute scale. The dipole force Pjl re-
spects the site symmetry of the dopants. In the case of Sr in
La2−xSrxCuO4, the off-diagonal term Pjl with j or l = 1 is
strictly zero. There are small P23 and P32 due to the buck-
ling of the CuO6 octahedra, which is ignored in our fitting.
As a result, the combination of HDS and TDS formulated in
Eqn.(1) and (2) with three diagonal Pjj as fitting parameters
well reproduces the experimental observations, as shown in
Fig. 1(d-f) and Fig. 2(b-e). The Pjl dipole tensor is deter-

mined as,

P =

 5.23± 0.06 0 0
0 8.96± 0.06 0
0 0 0.62± 0.03

 10−19N ·m

The significant difference between P11 and P22 reflects the
observed strong anisotropy of the diffuse scattering in the H-L
(K=0) and K-L (H=0) planes around (0 0 22) Bragg peak,
suggesting that the lattice around the Sr defects are more
strongly distorted along b direction than along a direction.
This anisotropy is a natural consequence of the orthorhom-
bic lattice environment in which the Sr defects reside in. We
emphasize that, at this point, the overall sign to the Pjl matrix
is arbitrary since it appears as the modular square in Eqn.(1).

Indeed, our temperature dependent studies further reveal
the sensitivity of the dopant associated strain to the subtle lat-
tice symmetry evolutions of La2−xSrxCuO4. In Fig.(3), the
line cuts of [H , 0, 22.15] and [0, K, 22.15] are plotted as
a function of temperature. At low temperatures, the strong
anisotropy in the diffuse scattering intensities along a∗ and
b∗ directions can be clearly seen. As a function of increasing
temperature, the anisotropy becomes smaller and almost invis-
ible at T = 250 K, which is close to the HTT-LTO transition
temperature(∼ 280 K[30]) for 8% doping. The peak-dip-peak
feature, characteristic for HDS, gradually loses its strength as
the temperature is increased for the [0, K, 22.15] cuts shown
in Fig.(3)(b). Such behavior suggests that the local strain is
gradually relaxed as the unit cell volume thermally expands at
high temperature, which supports the choice of positive sign
to the Pjl matrix and the strain is of tensile character. This
also agrees with the fact that the ionic radius of Sr2+ is much
larger than that of La3+, leading to an expansion of the unit
cell where the dopant resides in.
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FIG. 3: Temperature dependent H and K scans across [0, 0, 22.15].
Low temperature data shows big intensity ratio between K and H
cuts. The ratio decreases as temperature is increased and almost ap-
proaches 1 at T = 250 K.

With the determined dipole force tensor Pjl on absolute
scale, the amount of lattice distortion introduced by Sr dopants



4

can be in principle calculated. The displacement from average
position at ~R away from the dopant center, U(~R), can be writ-
ten as[28],

U(~R) =
i

(2π)3

∫
q

1

q2

∑
jl

g̃ijPjlqle
i~q·~Rdq3 (3)

Obviously, this integral diverges as the integration range of
q increases. This comes as no surprise since the elastic con-
tinuum approximation is only proper at not too large q region.
An ellipsoid cut-off was made to the integration in the recip-
rocal space[34]. The maximum qa, qb and qc are chosen to
be 0.25, 0.25 and 0.35 in r.l.u. respectively. These cut-off
values were chosen based on the acoustic phonon dispersion
curve reported in ref. [37], beyond which the dispersion sig-
nificantly deviates from linear relation and the elastic con-
tinuum approximation becomes invalid. We emphasize that
these cut-offs are also consistent with our data. As shown in
Fig. 2, beyond these values the measured diffuse scattering
intensity starts to merge into the background and becomes in-
distinguishable.
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FIG. 4: Reconstructed acoustic type strain deformation pattern in the
[Ra, Rb, 0] (top panels) and [0, Rb, Rc] (bottom panels) planes with
[0, 0, 0] to be the dopant center. The distance R is given in unit of
unit cell size. Ua,b,c are the components of the deformation vector
~U(~R).

With the previously determined cut-off, the reconstructed
strain field is shown in Fig. 4. The dopants introduce ripple-
like strain field around themselves. The maximum deforma-
tion is of the order of 0.001Å, and peaks within ∼ 1nm re-
gion around the dopants. For the unit cells farther away, their
deviation from average position quickly drops to be an-order-
of-magnitude smaller. Although the employed cut-off for the
integration in Eqn.(3) introduces some ambiguity to the recon-
structed strain field, we argue that the estimated amplitude is
reasonable qualitatively. Comparing with the thermal factors
estimated for La2CuO4 at low temperature by neutron powder
refinement[38], our estimated amplitude of the strain field is
slightly smaller on average. This is in good agreement with
our observations. In Fig.(2)(b-e), the fitting to several cuts in
the reciprocal space, together with the TDS contributions, are
shown. At low temperature of 7 K, the TDS contribution to
the diffuse scattering intensity is comparable to that from HDS

in small q region, and even dominates large q region since the
HDS drops faster as function of increasing |q|.

To evaluate the impact of this dopant associated strain field
on the local electronic properties in La2−xSrxCuO4, we com-
pare it to the uniform strain effect observed in the pressure
experiments[25, 26]. In the hydrostatic and uniaxial pres-
sure experiments, the superconducting temperature (Tc) for
La2−xSrxCuO4 can be tuned of the order of 1K/GPa. Based
on the linear compressibility coefficients for La2−xSrxCuO4

measured by G. Oomi et al.[39], a 0.01Å change in the
unit cell size is equivalent to a local pressure of about 1
GPa. Thus, the strain field in La2−xSrxCuO4 we observed
is likely to be too small to be responsible for the remark-
able nanoscale electronic inhomogeneity observed with STM
on La2−xSrxCuO4[6, 7]. We noticed that Fujita et al. re-
ported a dramatic effect of lattice deformation on Tc in
Bi2Sr1.6Ln0.4CuO6+δ by changing the rare earth ions Ln with
different ionic radius[40]. Since the propagated nanoscale
strain is small, the leading variables for such effect are likely
to be intra-unit cell parameters, such as the local tilting of the
CuO6 octahedra or apical oxygen motion, as suggested by the
EXAFS experiements[22–24].

Similar X-ray measurements were carried out by E. D.
Isaacs et al. on La2−xSrxCuO4 with similar doping[41].
There the diffuse scattering pattern was discussed in the con-
text of lattice response to possible correlated fluctuations of
the doped holes. We show that, with the elastic continuum
approximation, the scattering from the strain field associated
with un-correlated defect centers can well reproduce the mea-
sured data. The diffuse scattering peaks discussed in [41]
are from the intensity ridges shown in Fig.(1)(a-c), which are
characteristic HDS signals.

In conclusion, the nanoscale strain associated with the Sr
dopants in La2−xSrxCuO4(x = 0.08) has been studied with
X-ray diffuse scattering. The observed diffuse scattering pat-
tern can be well modeled with the elastic continuum approxi-
mation. From qualitative analysis, we show that the amplitude
of this strain field is comparable or smaller than the thermal
vibrations at even 7 K. With the lattice deformation being of
the order of 0.001 Å within ∼ 1nm around the dopants and
drops rapidly farther away, the impact to the local electronic
structure from such nanoscale strain field is likely to be neg-
ligible. As doping is a routine means for tuning properties of
materials, we expect that such HDS analysis presented herein
to be a powerful tool to isolate dopant-induced lattice strain
and determine its role in electronic properties in a diversity of
materials. Furthermore, with coherent-x-ray beam in future
diffraction-limited synchrotron radiation sources such diffuse-
scattering studies may allow one to explore dynamic fluctua-
tions as well.

We thank J. Tranquada for fruitful discussions. The work
at the Institute of Physics, Chinese Academy of Sciences is
supported by MOST (Grant No.2015CB921302), CAS (Grant
No. XDB07020200). This research used Sector 4 of the Ad-
vanced Photon Source, a U.S.Department of Energy (DOE)
Office of Science User Facility operated for the DOE Office



5

of Science by Argonne National Laboratory under Contract
No. DE-AC02-06CH11357.

∗ Electronic address: liuxr@shanghaitech.edu.cn
[1] E. Dagotto, Science 309, 257 (2005).
[2] S. H. Pan, J. P. O’Neal, R. L. Badzey, C. Chamon, H. Ding, J.

R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta,
K.-W. Ng, E. W. Hudson, K. M. Lang, and J. C. Davis, Nature
(London) 413, 282 (2001).

[3] T. Cren, D. Roditchev, W. Sacks, J. Klein, J.-B. Moussy, C.
Deville-Cavellin, and M. Laguës, Phys. Rev. Lett. 84, 147
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