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We study hydrodynamic transport in two-dimensional, interacting electronic systems with merging
Dirac points at charge neutrality. The dispersion along one crystallographic direction is Dirac-
like, while it is Newtonian-like in the orthogonal direction. As a result, the electrical conductivity
is metallic in one and insulating in the other direction. The shear viscosity tensor contains six
independent components, which can be probed by measuring an anisotropic thermal flow. One of
the viscosity components vanishes at zero temperature leading to a generalization of the previously
conjectured lower bound for the shear viscosity to entropy density ratio.

Hydrodynamic flow in quantum many-body systems is
essential in systems as diverse as superfluid Helium [1],
(Al,Ga)As heterostructures [2], cold atomic “gases” [3–
5], and the quark-gluon plasma [5, 6]. Recently, it has
become possible to study in greater detail the hydrody-
namic flow of electrons [7, 8] via transport measurements
in graphene, yielding a breakdown of the Wiedemann-
Franz law [9], super-ballistic transport [10, 11], negative
local resistance [12, 13], and giant magnetodrag [14] (for
a recent review see Ref. 15 and 16). Other key examples
are ultra-pure PdCoO2 [17] and Weyl semimetals [18].
The appeal of these experiments is that they allow for
an investigation of the universal collision-dominated dy-
namics of the pure electron fluid, largely independent of
its couplings to the lattice and impurities: the hydrody-
namic flow is expected when electron-electron scattering
dominates over impurity and electron-phonon scattering
processes [15].

Hydrodynamics is also one of the most successful ap-
plications of the duality between strongly coupled gauge
theories and gravity theory [19], leading to the lower
bound [20] for the ratio of the shear viscosity and en-
tropy density

η/s > ~/(4πkB) . (1)

While originally derived as an equality for a specific
strongly-coupled field theory, the bound was conjectured
to apply to all single-component non-relativistic fluids
[20]. Thus, to identify a scenario where Eq. (1) is explic-
itly violated is of fundamental importance. It is also of
practical relevance as a small viscosity implies a strong
tendency towards turbulent flow [21]. Eq. (1) can al-
ready be rationalized using Boltzmann transport theory:
Let s ≈ kBλ−d be the entropy density (in d dimensions)
in terms of the thermal de Broglie wave length λ and
η ≈ ετλ−d the shear viscosity with energy density ε and
scattering time τ . A quasiparticle description of trans-
port suggests that ετ > ~, leading to the above bound
(up to numerical coefficients of order unity). A more
formal reasoning can be made using scaling arguments.
We rescale distances according to x→ x′ = x/b with the

scaling factor b. Momentum conservation and hyperscal-
ing for critical systems imply that both the viscosity and
entropy density change according to η (T ) = b−dη (bzT )
and s (T ) = b−ds (bzT ), with the dynamic scaling expo-
nent z. Thus, the entropy density and shear viscosity
have the same scaling dimension. If the system ap-
proaches a fixed point, the ratio η/s should approach a
universal value in units of ~/kB . This is analogous to the
electrical conductivity in d = 2 that approaches a uni-
versal value in units of e2/~, a result that follows from
σ (T ) = b2−dσ (bzT ).

The bound (1) appears to be violated in gravity theo-
ries dual to an anisotropic version of a super-Yang-Mills
plasma [22–24] with applications to cold gases [25]. It
is of great interest to identify a solid-state system where
such a violation might occur.

In this Letter, we analyze the hydrodynamic behavior
in an anisotropic Dirac system, where two Dirac cones
merge in momentum space [26]. Such a model is relevant
to the organic conductor α-(BEDT-TTF)2I3 under pres-
sure [27] and the heterostructure of the 5/3 TiO2/VO2

supercell [28, 29]. Similar behavior is expected in the
surface modes of topological crystalline insulators with
unpinned surface Dirac cones [30] and quadratic double
Weyl fermions [31]. In the collision-dominated regime
at charge neutrality, we predict extremely anisotropic
electrical transport exhibiting either insulating or metal-
lic behavior depending on the orientation of the applied
electric field relative to the crystallographic axes. Sim-
ilarly, the electronic shear viscosity strongly depends
on the flow direction, exhibiting fundamentally differ-
ent temperature behavior. As a result, at low temper-
atures the viscosity to entropy density ratio may diverge,
stay constant, or vanish, depending on the spatial direc-
tion. In the latter case, the Eq. (1) is violated, an effect
with experimentally measurable consequences through
viscous thermal Hagen–Poiseuille flow. We explain the
anisotropic transport in terms of the emergence of multi-
ple length scales. In addition we propose a generalization
of the viscosity bound to two-dimensional anisotropic sys-
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FIG. 1. Upper panel (a): merging Dirac cones of the or-
ganic conductor α-(BEDT-TTF)2I3 under the application of
the uniaxial pressure [27]. At Pa = 40 kbar, the two Dirac
cones merge resulting in an anisotropic dispersion. Lower
panel (b): energy dispersion of the Hamiltonian (3).
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which includes the electrical conductivity anisotropy as
an additional observable. The numerical coefficient 1/4π
is consistent with Ref. 23.

The model. Anisotropic Dirac systems are described by
the model Hamiltonian, H = H0 +HC , where the single-
particle part is

H0 =

∫
d2r ψ†r

(
− 1

2m
∇2
xσx − iv∇yσy

)
ψr, (3)

and HC is the electron-electron Coulomb interaction with
two-body potential V (r−r′) = e2/ |r−r′|. Here, v is the
velocity along the y-direction and the Pauli matrices σx,y
describe the pseudo-spin space. The dispersion in the x-
direction is characterized by the mass m or, alternatively,
by the momentum scale k0 = mv. The anisotropy in
Eq. (3) is enforced by the underlying lattice. Specifically,
the direction of the parabolic dispersion (the x-direction)
is along the axis of the two merging Dirac points, see
Fig. 1. In the organic conductor α-(BEDT-TTF)2I3 [27],
the two Dirac cones merge together upon applying uniax-
ial pressure. According to Ref. 27, an anisotropic Dirac
cone is expected to form at P = 40 kbar, see Fig. 1. From
Ref. 32, it follows that the dimensionless strength of the
Coulomb interaction is of order unity, which is important
to reach a sufficiently wide temperature regime where
electron-electron scattering dominates.

The renormalization group behavior of this model was
recently investigated in Ref. [26] within a large-N expan-
sion [33, 34] (N is the number of fermion flavors; N=2 for

the organic charge transfer salts and N=8 for the oxide
interfaces). While an analysis is possible for arbitrary
values of the coupling constant α = e2/ (~v), we focus
here on the strong coupling behavior. In this regime, the
flow equations are [26]:

dα

d log b
= −0.362

N
α,

dk0
d log b

=
0.2374

N
k0. (4)

This gives rise to two characteristic length scales

λx ∝ T−φ/z, λy ∝ T−1/z, (5)

with the dynamic scaling exponent, z = 1−0.362/N . The
additional crossover exponent φ = (1−0.2374/N)/2 is a
measure of the anisotropy. z < 1 reflects an increase of
the velocity at low energies and φ < 1/2 implies that in-
teractions make the anisotropy even stronger if compared
to the bare spectrum of Eq.(3). The fact that φ 6= 1 is
the most crucial ingredient of our subsequent discussion.
The violation of the lower bound only requires φ 6= 1 as
one viscosity component vanishes faster than s for T → 0
even if the large-N approach turns out to be quantita-
tively inaccurate.

Scaling. Now we consider the constitutive relations
in anisotropic systems. The electrical conductivity is a
rank-two tensor defined in the standard way, jα = σαβEβ
(with α, β ∈ {x, y}). The viscosity is a rank-four ten-
sor connecting the dissipative part of the stress tensor
ταβ and the flow velocity gradient, ταβ=

∑
γδ ηαβγδ∂γuδ.

The number of independent conductivity and viscosity
coefficients can be found from symmetry arguments [35].
In a rotationally invariant system, both the conductiv-
ity and shear viscosity are each characterized by a sin-
gle independent coefficient: σαβ = σδαβ and ηαβγδ =
η (δαγδβδ + δαδδβγ − δαβδγδ) [35]. In this Letter, we fo-
cus on incompressible fluids and hence do not consider
the bulk viscosity. In contrast, the Hamiltonian (3) is not
rotationally invariant and is characterized by two conduc-
tivity elements σxx and σyy and six independent viscosity
coefficients with ηαβγδ = ηγδαβ , such that

τxx
τxy
τyx
τyy

=


ηxxxx 0 0 ηxxyy

0 ηxyyx ηxyxy 0
0 ηyxyx ηyxxy 0

ηyyxx 0 0 ηyyyy



∂xux
∂yux
∂xuy
∂yuy

. (6)

Below we show that the “off-diagonal” momentum relax-
ation along the y-direction (with linear dispersion) due
to a flow with velocity along the x-direction (of parabolic
dispersion) described by ηxyxy is clearly different from the
“opposite” case, ηyxyx.

The scaling behavior of the conductivity and the vis-
cosity follows from the Kubo formalism [36, 37]. If one
takes charge conservation into account, the scaling di-
mension of the conductivity is a purely “geometric” effect
that involves the length scales λα. If b is a scaling pa-
rameter for length scales along the y-direction, it follows
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[26, 38]

σxx (T ) = bφ−1σxx (bzT ) ,

σyy (T ) = b1−φσyy (bzT ) . (7)

Fixing the coefficient b via bzT = const reveals that b is
given by the ratio of the two length scales bφ−1 →λx/λy.
It immediately follows that σyy ∝ T (φ−1)/z diverges as
T → 0, while σxx ∝ T (1−φ)/z vanishes. The system is
insulating along the direction with parabolic dispersion
and metallic in the other direction. Below, we confirm
this behavior within an explicit kinetic theory and see
that this behavior is pronounced below the characteristic
temperature kBT0 ≡ mv2 ≈ 1.5 eV in the organic salts.

Similar behavior emerges for the entropy density and
the components of the viscosity tensor. For the entropy
density, it follows from the usual scaling behavior of
anisotropic systems [39], s (T ) = b−(1+φ)s (bzT ), yield-
ing s (T ) ∝ kB/ (λxλy). To determine the behavior of
the viscosity tensor we use again the Kubo formalism
(the details are summarized in the supplementary mate-
rial [40]). The result is that most tensor elements ηαβγδ
have the same scaling dimension as s (T ). However, there
are two crucial exceptions:

ηxyxy (T ) = b−(3−φ)ηxyxy (bzT ) ,

ηyxyx (T ) = b−(3φ−1)ηxyxy (bzT ) . (8)

It immediately follows that ηxyxy/s ∝ T 2(1−φ)/z and
ηyxyx/s ∝ T−2(1−φ)/z. Unless the system is isotropic
and φ = 1, one component vanishes and the other di-
verges. Thus, regardless of the numerical coefficient of
ηxyxy, it will violate the bound Eq. (1) at sufficiently low
temperatures since φ < 1. Below we obtain this behav-
ior from Boltzmann theory as well. The scaling analysis
reveals that the charge transport and momentum trans-
port are closely related to each other. This allows us to
construct combinations of physical observables that have
scaling dimension zero. These combinations are listed in
Eq. (2) and give rise to the generalized lower bound for
the viscosity tensor.

Hydrodynamics. The scaling behavior can be obtained
from the kinetic equation

∂fµk
∂t

+ vµk ·
∂fµk
∂x

+ eE · ∂fµk
∂k

= Ieeµ , (9)

where fµk is the distribution function for a quasiparticle
from the band µ and with the quasi-momentum k, and
Ieeµ is the collision integral due to the Coulomb interac-
tion. The latter we treat in perturbation theory in 1/N
(for details see Refs. 40 and 41).

Following the standard derivation of the hydrodynamic
theory in the limit of an incompressible fluid [21], we inte-
grate the kinetic equation (9) and obtain generalizations
of the Navier-Stokes equation at the charge neutrality
point. Flow along the direction of the parabolic disper-
sion is described by a Navier-Stokes equation similar to

FIG. 2. Left panel: Hagen-Poiseuille flow profile due to a tem-
perature gradient. The bound-violating small ratio ηxyxy/s
leads to a parabolic flow profile with large curvature and yields
a large thermal conductivity, while the large ratio ηyxyx/s
yields almost ohmic flow (b): Transverse temperature gra-
dient as function of the angle θ between flow direction and
x-axes (see left panel).

that of a Galilean invariant system,

m∗n (∂tux +ui∂iux) + ∂xP = Fs,x +m∗n∂iδj
i
I , (10)

where m∗ ≈ 1.37m, n is the total quasiparticle density,
δjI is the dissipative correction to the total quasiparticle
current, P is the hydrodynamic pressure, and Fs,β =
∂αταβ = ∂αηαβγδ∂γuδ is the Stokes force. Flow in the y-
direction obeys the equation similar to that in graphene
[42, 43]

Ts (∂tuy + ui∂iuy) + ∂yP + uy∂tP = (11)

= Fs,y − uyEiδji + uy∂xiδjε,i .

The dissipative terms include the corrections to the elec-
tric current, δj, and the energy current, δjε.

The simplest nontrivial solution of these equations can
be obtained in the linearized stationary regime in the
absence of the electric field. Using Eq. 6, we find

∂αP = η̃αααα∂
2
αuα + 2η̃αααα∂α∂αuα + η̃αααα∂

2
αuα (12)

with η̃αβγδ = 1
2 (ηαβγδ + ηγβαδ), and x=y and vice versa.

Note that η̃xyxy = ηxyxy and same for η̃yxyx. From
the kinetic equation it also follows that the heat cur-
rent, jε ≈ (5/3)εu, is solely determined by the flow ve-
locity. This is similar to the particle current in Galilean-
invariant systems and reflects the fact that the thermal
conductivity of a Dirac system at neutrality is infinite
in the limit of infinite size [44, 45]. Using ∂αP =−s∂αT
at neutrality, we can solve the above equations for a fi-
nite geometry, find the velocity profile u, and determine
the thermal current from jε. Note that this is how the
entropy density enters our theory.

Consider now a flow in a system of width w. In this ge-
ometry, there is no net flow in the lateral x-direction. The
solution of Eq. (12) with the no-slip boundary conditions,
uy (x = ±w/2) = 0, yields the standard Hagen-Poiseuille
profile

uy (x) =
s

2ηxyxy

(
w2

4
− x2

)
∂yT. (13)
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FIG. 3. Upper panel (a): the ratio ηαβγδ/s as a function of
temperature. The viscosity coefficient ηxyxy violates the lower
bound (shown by the dashed line). Lower panel (b): σαα as
function of temperature with insulating and metallic conduc-
tivity along the direction with parabolic and linear dispersion,
respectively.

Integration over the cross section yields the total ther-
mal current Iε = wκyy∂yT with the thermal conductivity
κyy = (5εw2/24)(s/ηxyxy). Similar analysis of the flow
along the x-direction yields κxx = (5εw2/24)(s/ηyxyx).
In the case of no-stress boundary conditions it is better
to analyze conical flow.

The above results demonstrate that the thermal Ha-
gen–Poiseuille flow is determined precisely by those vis-
cosity tensor elements (8) that violate the ordinary scal-
ing behavior. Thus, the ratios ηxyxy/s and ηyxyx/s mat-
ter and are in fact the easiest to observe. The other tensor
components emerge only when the flow direction is not
aligned with one of the crystalline axes. In this case a
transverse temperature gradient builds up, see Fig. 2.

Kinetic theory. Finally, we use the microscopic quan-
tum kinetic equation approach to find the conductivities
and viscosities. The former can be found in the standard
way [21]: applying a weak electric field, E, we drive the
system out of equilibrium where the distribution function
fµk acquires a nonequilibrium correction proportional to

the field: δfµk = f
(0)
µk (1−f (0)µk )hµk/T , hµk =µvµkEg

E
µk.

Solving the kinetic equation for the functions gEµk, we

find σxx,yy(T ) ∝ N2(e2/~)(T/T0)±(1−φ)/z in agreement
with the scaling results.

To determine the viscosity, we have to find the stress
tensor within linear response to the external shear force.
In terms of the nonequilibrium distribution function, the
stress tensor is given by ταβ=

∑
µ

∫
k
vαµkkβδfµk. The cor-

rection δfµk is proportional to the velocity gradients with

hµk =
∑
αβ µ(vαµkkβ−δαβεµk/2)∂αuβg

β
µk. Now we expand

the functions gβµk in the basis of the eigenfunctions of

the linearized kinetic equation [43, 46], gβµk =
∑
n ψ

β
nφ

(n)
µk .

The dominant contribution comes from the two modes
describing the energy and the energy band index. This
allows us to represent the kinetic equation (9) in the ma-
trix form, Mee

uβ,α
ψβ=Guβ,α , where the matrix Mee

uβ,α
corresponds to the collision integral due to Coulomb in-
teraction. The exact form of Mee

uβ,α
and Guβ,α can

be found in Ref. 40. Solving the matrix equation, we
find gβµk and hence the viscosity coefficients, ηαβγδ =∑
µ

∫
k
µvαµkkβ(vγµkkδ − δγδεµk/2)gβµkf

(0)
µk (1−f (0)µk )/T . At

charge neutrality, the resulting viscosities are given by
ηαβγδ = N2Cαβγδ(k20/~)(T/T0)φαβγδ , where Cαβγδ are nu-
merical coefficients of order unity. The exponents φαβγδ
coinside with the results of the above scaling analysis.

The linear-response solution of the quantum kinetic
equation yields the entropy density in the scaling form,
s = NCskB(k20/~2)(T/T0)(1+φ)/z. Due to the linear dis-
persion in the y-direction, the velocity component vy at
the scale T is larger than vx. The viscosity coefficient
ηyxyx describes the flow of the momentum kx with the
larger velocity component vy leading to the diverging ra-
tio ηyxyx/s. In contrast, the viscosity coefficient ηxyxy
corresponds to the flow of the momentum ky with the
much slower velocity vx, leading to the violation of the
bound. The ratios of the viscosity coefficients to the en-
tropy density are shown in Fig. 3.

Summary. In this letter, we have shown that
anisotropic Dirac systems are fascinating new materials
with unparalleled transport properties in the hydrody-
namic regime. The same material exhibits both insulat-
ing and metallic behavior depending on the direction of
the applied electrical field. Furthermore, the shear vis-
cosity is represented by a fourth rank tensor with six inde-
pendent components with the ratio ηαβγδ/s that may ei-
ther vanish or diverge, see Fig. 3. In the former case, the
universal bound (1) appears to be violated. We demon-
strated that these viscosity tensor elements can be mea-
sured via viscous thermal flow, where the more electri-
cally conducting direction is also the direction of larger
thermal conductivity. The thermal flow in the direction
with the linear spectrum is expected to be highly suscep-
tible to turbulence and should lead to large transverse
temperature variations. (see right panel of Fig.2). Simi-
lar behavior will also occur in other anisotropic systems,
such as critical bosonic systems at a Lifshitz point [39].
The ratio η/s (1) was introduced to have a measure for
the strength of interaction in a quantum fluid. Our anal-
ysis shows that the violation of the bound for anisotropic
systems is not necessarily an indicator for extreme in-
teractions, but reflects the fact that η/s is no longer
an appropriate measure of the interaction strength in
anisotropic systems. We have suggested a generalization
of the lower bound that takes into account the anisotropy.
The generalized bound (2) offers a better quantification
of fluid interactions. Nevertheless, the smallness of the
viscosity to entropy density ratio η/s � ~/(4πkB) for
anisotropic systems remains a strong indicator for a ten-
dency towards turbulent flow.
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