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Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional
quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the
fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto
charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons
and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two
gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with con-
straints on the mobility of lattice defects. The duality leads to numerous predictions for phases
and phase transitions of the fracton system, such as the existence of gauge theory counterparts
to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory.
Extensions of this duality to generalized elasticity theories provide a route to the discovery of new
fracton models. As a further consequence, the duality implies that fracton phases are relevant to
the study of interacting topological crystalline insulators.

Introduction. There has been a recent surge of theoret-
ical interest in a new class of quantum phases of matter
featuring excitations of restricted mobility. The archety-
pal examples of this phenomenon are models that exhibit
“fracton” excitations, particles which are strictly immo-
bile in isolation, but which can move through interaction
with other particles. More generally, there are particles
which move freely only along certain subspaces while
being immobile in the transverse directions, exhibiting
subdimensional behavior. Fractons and other subdimen-
sional particles were first seen in the context of certain
exactly solvable lattice models.[1–8] It was later realized
that these exotic phases of matter have a natural theo-
retical description in the language of tensor gauge the-
ories, which feature higher moment charge conservation
laws restricting the motion of particles.[9–11] There has
been rapid recent progress in the field, establishing con-
nections with quantum Hall systems,[12, 13] gravity,[14]
and glassy dynamics,[15, 16] among many other theoret-
ical developments.[17–30]

Despite extensive studies of their exotic properties,
fracton models have so far been lacking concrete physi-
cal realizations. To this end, in this Letter we explic-
itly demonstrate that, intriguingly, a two-dimensional
quantum crystal realizes a fracton model described by
a noncompact rank-two tensor gauge theory. This du-
ality is a direct tensor analogue of the familiar particle-
vortex duality relating a two-dimensional superfluid to a
noncompact U(1) gauge theory.[31, 32] As summarized
in Fig.1a, the longitudinal and transverse phonons of a
crystal map onto the two gapless gauge modes of the
tensor gauge theory, with the phonon momentum and
strain tensor mapping onto the magnetic and electric
tensor fields. Concomitantly, the topological lattice de-
fects map directly onto the gauge charges. Specifically,
disclinations and dislocations correspond to fractons and
dipoles, respectively. In this way, the constrained mobil-

FIG. 1: a) The Fracton-Elasticity Dictionary: Excitations
and operators of the scalar-charge tensor-gauge theory are in
one-to-one correspondence with those of a two-dimensional
quantum crystal. (Pictures of lattice defects adapted from
Ref. 33.) b) A dislocation can only freely move by

gliding along its Burgers vector ~b, while dislocation climb

(motion perpendicular to ~b) requires the presence of va-
cancy/interstitial defects.

ity of fracton models is demystified in terms of the well-
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known restrictions on motion of a crystal’s topological
defects. Dislocations can only glide along their Burg-
ers vector, as shown in Fig.1b, while tranverse motion
(dislocation climb) requires the absorption or emission
of vacancies and interstitials. Similarly, any motion of
a disclination creates a “scar” of extra dislocations in
the crystal.[34–37] There are no local processes which
move a single disclination, which is therefore immobile
in isolation, a manifestation of the fracton phenomenon.

Utilizing this duality, we make numerous predictions
about the phases and phase transitions of the fracton
gauge theory by mapping onto established results in elas-
ticity theory. For example, the fracton system will ex-
hibit natural gauge theory analogues of the commensu-
rate (vacancy/interstitial-free) crystal, supersolid, hex-
atic, and isotropic fluid phases. We can thereby also
determine the critical properties of transitions between
these phases. By generalizing the duality to elastic-
ity theories of other physical systems, such as three-
dimensional crystals, magnetic Wigner crystals and liq-
uid crystals, our arguments provide a route to the dis-
covery of new fracton phases. In turn, the conservation
laws of fracton gauge theories provide a convenient and
systematic tool for encoding and analyzing the dynamics
of crystal defects. As a further application of the duality,
we discuss the relevance of fracton theories to the study
of interacting topological crystalline insulators (TCIs).

Duality. We begin by presenting a streamlined
derivation of fracton-elasticity duality, relegating a more
detailed derivation and discussion to a companion
paper.[38] Dual gauge formulations of elasticity theory
have been investigated in the past [39], though with
different focus and without making physical connection
with fracton theories, which is the aim of the present
work. The theory of elasticity is conveniently formu-
lated in terms of a phonon vector field ui(x) representing
the displacement of an atom from its equilibrium posi-
tion. The low-energy action for the displacement is given
by[40–42],

S =

∫
d2xdt

1

2

[
(∂tu

i)2 − Cijk`uijuk`
]
, (1)

where uij = 1
2 (∂iuj +∂jui) is the linear part of the sym-

metric strain tensor and Cijk` is a matrix of elastic con-
stants, with its components determined by the underly-
ing lattice. It is useful to separate the displacement field
into its singular and smooth phonon pieces, in terms of

which we write uij = u
(s)
ij + 1

2 (∂iũj + ∂j ũi), where ũi is
a smooth single-valued function, and the singular strain

component u
(s)
ij is sourced by topological defects via

εikεj`∂i∂juk` = εikεj`∂i∂ju
(s)
k` = s. (2)

The disclination density s = εij∂i∂jθb is defined as
a singularity of the bond angle, θb = εk`∂ku`, giv-
ing s = εij∂i∂j(ε

k`∂ku`). Dislocations are also im-

plicitly accounted for in this treatment, since a dis-
location can be regarded as a bound state of two
disclinations,[33, 40, 41, 43] as we will see explicitly.

We now introduce two Hubbard-Stratonovich fields, a
momentum vector πi and a symmetric stress tensor σij .
In terms of these variables, we rewrite the action as,

S =

∫
d2xdt

[
1

2
C−1
ijk`σ

ijσk` − 1

2
πiπi

− σij(∂iũj + u
(s)
ij ) + πi∂t(ũi + u

(s)
i )

]
,

(3)

with the original action recovered by integrating out the
fields πi and σij . The smooth displacement field ũi can
now be integrated out, thereby enforcing the constraint,

∂tπ
i − ∂jσij = 0, (4)

which is simply the continuum form of the Newton’s
equation of motion, relating the stress imbalance to the
rate of change of lattice momentum. To solve this con-
straint it is convenient to first introduce rotated field
redefinitions, Bi = εijπj and Eijσ = εikεj`σk`, which
transforms the Newton equation constraint (4) into the
generalized Faraday equation, appearing in fracton ten-
sor gauge theories,[10]

∂tB
i + εjk∂

jEkiσ = 0. (5)

The label σ on the field Eijσ indicates its relation to the
rotated stress tensor.

The general solution to this equation is conveniently
expressed in terms of a symmetric rank-2 tensor gauge
field, Aij , and a scalar potential, φ, (in analogy with the
potential formulation of Maxwell’s vector electrodynam-
ics)

Bi = εjk∂
jAki , Eijσ = −∂tAij − ∂i∂jφ , (6)

with φ playing the role of the Airy stress function of
static elasticity theory. Note that the fields Eijσ and Bi

are invariant under the generalized gauge transformation
on the potentials,

Aij → Aij + ∂i∂jα , φ→ φ+ ∂tα (7)

for arbitrary function α(x, t). The potential formulation
has therefore introduced a gauge redundancy into the
problem. Expressing the action (3) in terms of electric
and magnetic fields, using the potentials in (6) inside
the last two terms, integrating by parts and utilizing the
definition of the disclination density (2), we obtain,

S =

∫
d2xdt

[
1

2
C̃−1
ijk`E

ij
σ E

k`
σ −

1

2
BiBi − ρφ− J ijAij

]
,

(8)
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where C̃ijk` = εiaεjbεkcε`dCabcd is a function of the elas-
tic coefficients, ρ = s is the disclination density, and
J ij = εikεj`(∂t∂k − ∂k∂t)u` is the current tensor cap-
turing the motion of disclocations and disclinations, as
introduced in Ref. 10, 44. For a dislocation with Burg-
ers vector b` moving at velocity vj , this tensor takes the
form J ij = ε(i`vj)b`,[45] with the trace J ii describing dis-
location climb.[44, 46] The action of Eq.8 is in precisely
the form of the scalar-charge tensor gauge theory, allow-
ing for anisotropy in the electric field term, with discli-
nations playing the role of fracton charges.[10, 12] This
action leads to two gapless gauge modes, corresponding
to the longitudinal and transverse phonon modes of elas-
ticity theory.

We note in passing that this gauge theory does not
support instanton events in the path integral, which
would correspond to terms in the elasticity Hamiltonian
which explicitly break translational symmetry and gap
out the phonon modes, as could arise via coupling to
a substrate. For a conventional crystal, which breaks
an underlying translational symmetry spontaneously, in-
stantons are forbidden and the gauge field is noncom-
pact, as discussed further in the companion paper.[38]

It will also be useful to introduce a canonical conjugate
electric tensor field, Eij = −∂L/∂Ȧij = C̃−1

ijk`E
k`
σ , in

terms of which the tensor gauge theory Hamiltonian is
given by

H =

∫
d2x

(
1

2
C̃ijk`EijEk`+

1

2
BiBi+ρφ+J ijAij

)
. (9)

Note that the scalar potential φ does not have a con-
jugate field, but rather acts as a Lagrange multiplier
enforcing the scalar Gauss’s law constraint,

∂i∂jE
ij = ρ. (10)

This constraint is the dual formulation of Eq.(2), defin-
ing the disclination density. We see that the duality
maps Eij to a rotated strain tensor via Eij = εikεj`uk`,
while the closely-related “velocity”-like field, Eijσ is
mapped to a rotated stress tensor via Eijσ = εikεj`σk`.
The relation Eijσ = C̃ijk`Ek` between the two electric
field tensors exactly mirrors the relation σij = Cijk`uk`
between the stress and strain tensors. The Gauss’s law
(10) is notable for leading to conservation of both charge
and dipole moment[9]

Q =

∫
d2x ρ = const. , P =

∫
d2x (ρx) = const.

(11)
The conservation of dipole moment has the dramatic
consequence that an isolated charge is strictly locked in
place, since a motion of a fracton charge proceeds by
a creation of a dipole moment, and thus would violate
dipole charge conservation. The presence of this extra
conservation law therefore directly encodes the fractonic
behavior of disclinations.

The dipole moment conservation law also implies that
a dipole is a topologically stable excitation, since it can-
not decay directly into the vacuum. In elasticity lan-
guage, this corresponds to a bound state of two equal
and opposite disclinations, known as the dislocation
defect.[40, 41] We can check this correspondence explic-
itly by studying the total dipole moment contained in a
region V . Assuming the region has zero net charge (so
that dipole moment is independent of origin), we can
write the dipole moment in the form,

P i =

∫
V

d2x (ρxi) =

∮
∂V

dsj∂j(ε
ikuk),

= εik∆uk = εikbk ,

(12)

where ∆uk is the net change in the displacement uk go-
ing around the boundary of a region V , which is precisely
the definition of a Burgers vector b. From this, we see
that the dipole matches explicitly with a dislocation de-
fect, P = ẑ× b, with the dipole vector perpendicular to
the Burgers vector. With this correspondence in place,
the fracton-elasticity dictionary is now complete, as sum-
marized in Fig.1.

One important additional property of a crystal that
dual gauge theory must capture is that in the absence
of vacancies and interstitials a dislocation can only move
along its Burgers vector, i.e., can glide but is unable to
climb. On the other hand, by itself a conservation of a
dipole moment does not place any fundamental restric-
tion on the motion of a dipole. To see how the one-
dimensional constrained dipole dynamics arises in the
tensor gauge theory, we consider a particular component
of the quadrupole moment. Following the standard anal-
ysis of fracton theories,[9] it is straightforward to derive
the following conservation law,∫

d2x (ρx2 − 2Eii) = const. (13)

Any longitudinal motion of a dipole requires a change
of this quadrupole moment, which, as we see from the
above constraint is necessarily accompanied by a change
in Eii. To understand the physical meaning of this con-
servation law, we rewrite the trace in elasticity language,

Eii = ∂iu
i = nd + ∂iũ

i, (14)

where we have broken up the divergence into nd, the
number of vacancies minus the number of interstitial de-
fects, and a smooth elastic piece ũi. We can then write
our conservation law as,∫

d2x (ρx2 − 2nd) = const. (15)

In other words, the longitudinal motion of a dipole (cor-
responding to a dislocation climb) requires the absorp-
tion or creation of vacancies or interstitial defects. This
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FIG. 2: The duality with elasticity theory predicts that the
fracton gauge theory exhibits two finite-temperature phase
transitions, corresponding to unbinding of dipoles and frac-
tons, respectively.

provides a kinetic and energetic barrier, which, in the
absence of vacancies and interstitials constrain disloca-
tions and the corresponding fracton dipoles into quasi-
one-dimensional particles, as expected.

To see more formally and explicitly that longitudinal
dipole motion (equivalently, dislocation motion trans-
verse to its Burgers vector, i.e., a climb) creates va-
cancy/interstitial defects, we examine the Ampere equa-
tion of motion, δH/δAij = 0, which takes the form,

∂tE
ij +

1

2
(εik∂kB

j + εjk∂kB
i) = −J ij . (16)

The piece of this equation that is relevant for our pur-
poses is the trace, which can be written as[44]

∂tnd + ∂iJ
i
d = −J ii , (17)

where J id = πi = εjiBj is the current density of va-
cancies and interstitials, and we have used the fact that
Eii ≈ nd, since ∂iũ

i � 1. The above equation represents
a continuity equation for the vacancy/interstitial num-
ber, sourced by a dislocation current transverse to the
Burgers vector, J ii = ẑ · (v×b), indicating that disloca-
tion climb creates vacancy/interstitial defects.[44]

Dual fracton superconductor. The duality has mapped
a 2d crystal onto a rank-two gauge theory coupled to
fracton matter, with the dual gauge theory action (8)
naturally describing a fracton insulator. However, to
access finite density fracton phases, it is convenient to
introduce more explicit coupling to matter fields[38]

S =

∫
d2xdt

[
1

2
C̃−1
ijk`E

ij
σ E

k`
σ −

1

2
BiBi

−1

2
g1(∂i∂jθ −Aij)2 +

1

2
g0(∂tθ − φ)2

]
, (18)

where θ is the phase of the fracton field and the gi are
determined by core energies of the defects. This action
is capable of describing a dual fracton “superconductor”
(i.e., a condensate of fractons), with the normal phase
(i.e., the fracton insulator) corresponding to the crystal.
This action also supports a third phase between the frac-
ton superconductor and insulator, as we discuss next.

Applications. The field of fractons is still in the early
stages of development, and thus lacks much of the ba-
sic machinery used in the study of symmetry breaking
systems and conventional topological phases. As such,
much less is known about the various phases and phase
transitions of fracton models (though recent progress
has been made on this subject).[13] For the specific
fracton model discussed here, however, we can obtain
the entire phase diagram and characterize the nature
of phase transitions by the above mapping onto a two-
dimensional crystal, which has been studied in great
detail.[47–49] The duality thereby gives key features of
phases and phase transitions of the above scalar charge
fracton model, which we expect to also provide insight
into more general fracton systems.

More specifically, in addition to the above established
correspondence between a crystal and gauged fracton in-
sulator, two fracton-proliferated phases emerge as du-
als of the orientationally ordered (e.g., hexatic) and
isotropic fluids. On the elasticity side, these appear at fi-
nite temperature as a result of two-stage BKT-like melt-
ing transitions: (i) a crystal-to-hexatic fluid transition,
at which dislocations (that are logarithmically bound in
a crystal) proliferate,[47–49], followed by (ii) a hexatic-
to-isotropic fluid BKT transition[50–52], at which discli-
nations (bound quadratically in the crystal phase, but
screened down to logarithmic binding in the hexatic) en-
tropically proliferate. We thus predict a finite temper-
ature fracton phase diagram with three distinct phases,
distinguished by the proliferation of dipoles and fractons,
as summarized in Fig.2. The proliferated phases can
be regarded as a dipole condensate and a fracton con-
densate, respectively, with implications for the quantum
theory of melting, discussed elsewhere.[38] These transi-
tions are all captured by the tensor dual “superconduc-
tor” model, (18), that at finite temperature reduces to
a classical 2d tensor sine-Gordon model. We leave the
more detailed analysis of these fracton phases and tran-
sitions on the gauge theory side to future research.[38]

We also note that at zero temperature two qualita-
tively distinct quantum crystal phases are allowed. A
“commensurate crystal” (with the weight of Bragg peaks
commensurate with the number of particles) is char-
acterized by long-range positional and orientational or-
ders and a vacuum of gapped vacancies and interstitials,
i.e., a Mott insulator. With increased quantum fluc-
tuations (e.g., reduced mass), vacancies and interstitials
condense at finite density into an “incommensurate crys-
tal”, that is a supersolid[53–55] in the case of bosonic
atoms. The fracton-elasticity duality thus predicts two
distinct zero-temperature fracton insulating phases on
the tensor gauge theory side, distinguished by gapped
and condensed quadrupole excitations.

We conclude by noting that fracton-elasticity dual-
ity draws an intriguing connection to a seemingly unre-
lated subject of classification of interacting crystal sym-
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metry protected topological insulators (TCIs).[56–66] In
classifying interacting symmetry-protected topological
(SPTs) phases, one particularly powerful tool is gauging
the symmetry protecting the SPT phase.[67] The result
is a topologically ordered state[68], described by a gauge
theory with a gauge group equivalent to the symmetry
group of the original SPT phase, with different inter-
acting SPT phases corresponding to distinct topological
phases.

For internal symmetry groups, this gauging procedure
is fairly straightforward, done by coupling to a dynamical
flux of the symmetry group. However, for the case of spa-
tial symmetries, the notion of flux insertion is less clear.
As recently demonstrated[69], flux of a crystal symme-
try is equivalent to a lattice defect, with a dislocation
and a disclination respectively corresponding to a flux
of translational and rotational symmetries. A resulting
model with a fully gauged crystalline symmetry exhibits
dynamical lattice defects, i.e., it is a quantum elasticity
theory. Fracton-elasticity duality then allows us to map
the gauged system onto a fracton theory. Hence, the re-
sult of gauging a two-dimensional crystalline symmetry
is a fracton phase, as opposed to the more conventional
topological phases obtained by gauging an internal sym-
metry. We expect that a more detailed understanding of
fracton phases thus obtained by gauging crystal symme-
tries may prove useful for classifying interacting TCIs,
a quest that is still being actively pursued.[70–76] We
leave the details of implementing this program as a task
for the future.

Conclusions. In this manuscript, we have explicitly
demonstrated a duality between two-dimensional quan-
tum elasticity and a fracton tensor gauge theory, in a
natural tensor generalization of conventional particle-
vortex duality. The topological defects of a 2d crystal
map directly onto the charges and dipoles of the gauge
theory, while phonons and elastic strain tensor respec-
tively correspond to the gapless gauge modes and the
tensor electric field. This duality demystifies the con-
strained mobility of fractons and dipoles by mapping
them onto known properties of disclinations and dislo-
cations, respectively. As a result, we made predictions
about fracton phases and phase transitions by mapping
onto the phase diagram of quantum crystals. Our work
opens the door for the future exchange of ideas between
the emerging field of fractons and the well-established
study of elasticity theory.
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