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We report an experimental and numerical demonstration of dispersive rarefaction shocks (DRS)
in a 3D-printed soft chain of hollow elliptical cylinders. We find that, in contrast to conventional
nonlinear waves, these DRS have their lower amplitude components travel faster, while the higher
amplitude ones propagate slower. This results in the backward-tilted shape of the front of the wave
(the rarefaction segment) and the breakage of wave tails into a modulated waveform (the dispersive

shock segment). Examining the DRS under various impact conditions, we find the counter-intuitive
feature that the higher striker velocity causes the slower propagation of the DRS. These unique
features can be useful for mitigating impact controllably and efficiently without relying on material
damping or plasticity effects.

PACS numbers: 45.70.-n 05.45.-a 46.40.Cd

In recent decades, computational and experimental in-
vestigation of mechanical waves propagating in nonlinear
lattices has been a subject of intense research. Primary
efforts have been placed on exploring solitary traveling
waves [1, 2] and discrete breathers [3, 4]; see also [5, 6].
Arguably, less attention has been paid to the possibility
of shock wave formation, especially at the experimental
level within the realm of granular crystals and mechani-
cal metamaterials [7–10]. Herbold and Nesterenko inves-
tigated the formation of shock waves under the influence
of viscous dissipation [7]. Molinari et al. [8] studied
dispersive shock waves in uniform and periodic hetero-
geneous granular crystals, which feature oscillatory wave
tails following the steady shock front. Shocks in disor-
dered granular crystals were also studied in [9]. In these
studies, granular lattice elements interact with each other
under the effective strain-hardening power law (i.e., com-
pressive force F and displacement δ have F ∼ δp where
the nonlinear exponent p > 1) [11].

If a discrete system can exhibit effective strain-
softening behaviors (p < 1), we can anticipate the emer-
gence of distinctive features in comparison to the case of
p > 1. For instance, Herbold et al. reported theoreti-
cal observation of rarefaction waves, which form tensile
wavefronts despite the application of compressive impact
[12]. More recently, Yasuda et al. demonstrated numeri-
cally the formation of waves that combine a dispersive
shock tail and a rarefaction front wave, so-called dis-

persive rarefaction shocks (DRS), by using generalized
power-law contact models [13]. These studies, however,
have been conducted without experimental verification,
though the experimental feasibility has been discussed in
tensegrity [14] and origami [15] platforms. If we can re-
alize a physical system that supports the DRS, it would
enable a two-fold efficient impact mitigation system for

attenuating stress waves: one by transitioning the steep
shock wavefront into a back-tilted form (within the rar-

efaction) and the other by distributing energy to oscil-
latory tails over the space domain (within the dispersive

shock).

Soft materials have been emerging as a new playground
for the formation of nonlinear waves [16, 17]. The non-
linear behavior of soft materials depends not only on the
mechanical properties of their constitutive materials, but
also on their assembling architectures, e.g., geometrical
configurations and buckling behavior [18–20]. This of-
fers us an enhanced degree of design freedom compared
to conventional lattices, such as granular crystals whose
tunability relies heavily on their local contact mechanics.
The use of soft materials can be further beneficial for im-
pact mitigation purposes, since their material damping
capability can be added on top of the wave dynamics ef-
fects, such as aforementioned dispersion and rarefaction.

In this Letter, we combine the above functionalities by
deploying a soft-lattice system as a prototypical testbed
for an experimental manifestation and corresponding
numerical modeling of the DRS. Specifically, we fab-
ricate a 3D-printed chain of hollow elliptical cylinders
(HECs), and show that this nonlinear waveguide follows
the strain-softening behavior with the nonlinear expo-
nent p < 1, stemming from its geometrical nonlinearity.
Using this one-dimensional (1D) HEC chain, we demon-
strate the emergence of the DRS under a striker impact
condition. Furthermore, two of unique features of the
DRS, i.e., the back-tilted wavefront due to the rarefac-
tion and the oscillatory wave tails due to the dispersive
shock, are validated not only experimentally, but also
computationally by using the finite element and the dis-
crete element methods. Ultimately, we assess the effect
of wave dispersion and rarefaction by the DRS in com-
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FIG. 1: A schematic diagram of the dynamic test setup. The
top inset illustrates the enlarged HEC unit cell and its di-
mensions. The bottom inset shows the force-displacement
curve (blue) obtained from the quasi-static compression test,
along with the power-law fitting result (red). The digital
image shows the compression test setup. The compressive
components of forces and displacements are defined positive
throughout the Letter.

parison to the material damping effect, confirming the
efficacy of the HEC in stress wave attenuation.

The experimental setup is composed of a chain of
HECs, a striker impact system, and measurement de-
vices (Fig. 1). The chain consists of 26 HECs, which are
3D-printed (Ultimaker 3) with a poly-lactic acid (PLA)
material and epoxy-bonded together at their interfaces.
The mass of each HEC is m = 0.455 ± 0.006 g. Two
linear stainless steel shafts (diameter: 2.38 mm) pene-
trate the side surfaces of the HECs to align them and
to restrict their lateral motions. The two shafts are sup-
ported firmly by the 3D-printed jigs to minimize their
vibrations. We note in passing that the HECs in this
horizontal setup interact with each other following the
power law with p < 1, which is confirmed by the quasi-
static loading test (see the bottom inset of Fig. 1 and
Supplemental Material (SM) [21] for details).

To apply impact to the HEC system, we use a vibra-
tion shaker (LDS V406, B&K) that launches a rectan-
gular striker (PLA, mass: ms = 4.3 g) towards the first
HEC in the chain at a controllable and consistent speed
(vs = 2.73 ± 0.05 m/s). The striker impact triggers
the high speed camera (Phantom v1211) by means of
a piezoelectric disc attached to the outer surface of the
first HEC. The high speed camera is translated along the
linear stage (BiSlide, Velmex) to capture the dynamic
displacement profiles of each cylinder (i.e., xn for the
nth particle) by using the digital image correlation tech-
nique [21]. In each measurement spot, we run the impact

experiment five times for statistical treatment.

Based on the recorded displacements, the strain be-
tween neighboring particles can be obtained as un =
(xn+1 − xn)/a, where a is the major axis length of the
cylinder (a= 30 mm in this study). Figure 2(a) shows the
surface map of the measured strains in space and time
domains based on the experimental data, see SM [21]
for details. A unique feature to notice is that the shape
of the leading pulse changes from the initial compactly-
supported shape to a wider one (see the increasing gap
between the front edge (dashed line) and the peak points
(dotted line) in Fig. 2(a), see also [22]). This implies that
the wave component with the smaller amplitude (i.e.,
front edge) travels faster than the one with the larger
amplitude (wave peak). This results in the deformation
of the waveform, such that it gradually leans backward
and shifts the wave peak location to the rear. This is
more evident from Figs. 2(d-f), where the shaded areas
show the evolution of the wavefront shape in the space
domain over time. These experimental results showcase
the formation of the rarefaction wavefront. Another fea-
ture to take note of from Fig. 2(a) is that the wave
shows oscillating wave trails whose peak amplitudes show
a monotonic decrease [see also the trailing part of the
wave in Fig. 2(f)]. This oscillatory pattern combining
the amplitude-dependent wave speed with the dispersive
phenomena is the principal characteristic of dispersive
shock waves [23].

We also conduct numerical simulations of the DRS by
using a finite element method (FEM) [Fig. 2(b), see
SM [21] for details]. The formation of the DRS is also
evident in the FEM results, and the DRS profiles based
on the FEM are in agreement with the experimental re-
sults. The advantage of the FEM is that we can extend
the chain length at will, so that we can observe the evo-
lution of the DRS over a larger space domain, which, in
turn, enables a more pronounced manifestation of the rel-
evant phenomenology. Figure 3(a) shows the FEM simu-
lation result of the spatial wave profiles of the DRS using
an HEC chain with N = 300. First, we can clearly ob-
serve that the wave tail develops into a modulated wave-
form as the wave propagates through the HEC chain.
This is strongly reminiscent of the multi-scale manifes-
tation of dispersive shock waves [24]. In particular, the
fast-traveling oscillatory waves which are harmonic when
viewed in a local scale, bear an envelope of a slowly decay-
ing modulation in a larger scale. Analyzing the frequency
components in the wave tails, we find that they follow the
local resonance of the HEC (see details in SM [21]).

To complement the analysis, Fig. 3(b) shows the lead-
ing pulse profiles of the DRS, collected at different tem-
poral moments but all aligned with respect to the ori-
gin in the space domain. It is evident that the wave-
front width expands while its peak is attenuated. The
evolution of the wave width is quantified in the inset
in terms of the half-width-at-half-maximum (HWHM),
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FIG. 2: Surface map of strains in time and space domains
from: (a) Experiments, (b) FEM, and (c) DEM. In (a), the
white dotted line is the peak trace of the wavefront, and the
white dashed line is its leading edge. Strain profiles are plot-
ted at different time points, (d) t = 2.73 ms, (e) 6.78 ms,
and (f) 10.88 ms based on experiments (blue dotted curves),
FEM (red dashed curves), and DEM (yellow solid curves).
The green shaded area denotes the enlarging spatial width of
the DRS wavefront.

which shows a monotonic increase. The experimental
data points in hollow markers corroborate the FEM re-
sults for the short-chain region.
While the FEM provides us with an accurate compu-

tational visualization of the experimental phenomenol-
ogy, it would be beneficial to derive a simple yet effective
model of the HEC chain. With a proper model capturing
the principal features of the dynamics discussed herein,
we can enhance our understanding of the forming mech-
anism of the DRS. To this end, we approximate the con-
tinuum HEC system via a 1D monomer chain of lumped
masses based on the discrete element method (DEM).
In this discrete system, the neighboring HEC particles
are assumed to interact with each other by the following
power-law [12]:

F = A(∆x + δ0)
p
− f0, (1)

where A is the contact coefficient, ∆x is the relative dis-
placement between neighboring HEC centers, δ0 is an ef-
fective pre-compression term, and f0 is a force constant
to incur no interactions under zero particle displacement
(i.e., f0 = Aδp0). The validity of this power law in our
HEC system is demonstrated by the curve fitting result
shown in the bottom inset of Fig. 1 (further details for de-
riving the coefficients of Eq. (1) are in SM [21]). We have
confirmed that the present setting pertains to the weakly
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FIG. 3: (a) FEM striker impact simulation result at vs = 2.73
m/s, no damping included. The strain is calculated at time t

= 20, 52, 84, 116, 148 ms from left to right. (b) The evolution
of the leading pulse’s waveform (right halves shifted to the
origin) over time (t = 1.7, 3.9, 15, 29, 43, 57, and 71 ms
from compact- to broad-supported shapes). The inset shows
the right HWHM over time. The diamond markers denote
experiment results. (c) cg vs. vs (N = 26). The green curve
shows DEM simulation results, while the experimental and
FEM results are shown in solid blue and hollow red circles,
respectively. The inset shows an enlarged view around the
experiment data points.

nonlinear regime (i.e.,∆x/δ0 ≈ 0.4) and that a power law
approximation of the corresponding nonlinearity is suit-
able for representing the relevant phenomenology [21].

For the nth particle in the HEC chain, the equation of
motion can be written as

mẍn = A(δ0 + xn−1 − xn)
p
−A(δ0 + xn − xn+1)

p
− cdẋn,

(2)
where n = 2, 3, · · · , N − 1 (N = 26), the overdot denotes
a time-derivative, and cd is the damping coefficient ob-
tained empirically by curve-fitting with the experimental
data. To account for the boundary conditions, the equa-
tions of motions for the first (n = 1) and the last (n = N)
particles need to be modified [21]. We solve these differ-
ential equations using the fourth-order Runge-Kutta rou-
tine to analyze the dynamic response of the discretized
HEC chain. Note that for the accurate comparison with
the experimental results, we feed into the solver the first
particle’s displacement profile (i.e., x1) obtained from the
experiment. As a result, the strain surface map based on
the DEM is plotted in Fig. 2(c). The DEM result is in
good agreement with the experimental one [Fig. 2(a)].
The spatial profiles of the propagating DRS also corrob-
orate those from the experiments and the FEM [Figs.
2(d-f)].
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By leveraging the fast and efficient computation of the
DEM, we move on to the next question; as the striker
velocity (vs) is varied, how will the resulting DRS be af-
fected as characterized by its group velocity (cg)? Con-
ventional nonlinear waves, including shocks, tend to gen-
erate faster traveling waves as we impose higher external
excitations. For example, Nesterenko [1] derived the re-

lationship cg ∼ v
1/5
p in granular crystals, where vp is the

particle velocity that is directly related to vs. Figure
3(c) shows the DEM calculation of cg (green curve) as a
function of vs, where cg is obtained by tracing the peak
points in the strain map and calculating their averaged
slope [e.g., see the dotted-line slope of Fig. 2(a)]. Note
that given the short chain (N = 26), the variation of cg
along the chain is less than 1%. In Fig. 3(c), it is striking
that the leading pulse of the DRS propagates slower for
higher external excitations in terms of the striker velocity
applied.
To experimentally verify this important by-product of

the strain-softening nature of the HEC chain, we con-
duct impact tests with various striker velocities: vs =
1.89 ± 0.07 m/s and vs = 0.83 ± 0.04 m/s, which are
roughly 2/3 and 1/3 of the previous striker velocity.
Their results are plotted in Fig. 3(c) in solid dots (see
also the inset, where error bars based on the standard
deviations of the five tests are almost invisible due to
consistency). The numerical results from the FEM are
also marked in red circular dots. We confirm that the
experimental and computational results corroborate the
negative correlation between vs and cg predicted by the
DEM. We also note that at vs ≈ 0, we have cg ≈ 54
m/s, which corresponds to the linear wave (i.e., sound
wave) speed in the HEC chain. Becasue of this asymp-
totic nature of cg, we find that the relationship between
the group and phase speeds does not follow the afore-

mentioned power law of cg ∼ v
1/5
p shown in the typical

granular chains (see SM [21] for details).
To assess the efficacy of the HEC chain as an impact

mitigation system, we calculate the evolution of the max-
imum potential energy experienced by each inter-particle
location, as the wave propagates along the chain. The po-
tential energy Ψ(n) stored in the nth inter-particle spot
can be simply found by integrating Eq. (1) as

Ψ(n) =
A

p+ 1

[

(δ0 + xn − xn+1)
p+1

− δp+1
0

]

− f0(xn − xn+1).

We calculate the potential energy over time and find a
peak value, Ψmax(n), in each inter-particle location. This
potential energy value after normalization is shown in
Fig. 4. The solid curve denotes the DEM results based
on the curve-fitting with the experimental data (see dia-
mond dots with error bars in the inset). In this process,
the degree of the material damping – in terms of the chain
damping coefficient cd (in Eq. (2)) and the striker damp-
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FIG. 4: The peak potential energy for each cylinder, normal-
ized by the input potential energy, is plotted as a function
of the inter-particle location. Solid and dotted curves repre-
sent the DEM results with and without damping, respectively.
Experiment results are plotted as yellow diamonds in the be-
ginning of the chain, which can be more clearly seen in the
inset. The bar graph on the right shows the contribution of
the damping (cyan) and the combined effect of dispersion and
rarefaction (blue) to the overall potential energy reduction (in
case of cd = 0.003 and cs = 0.2).

ing coefficient cs (see SM [21]) – is optimized, such that
the DEM best fits the experimental trend. We observe
the fast decay of the peak potential energy over the spa-
tial regime, which manifests a highly efficient mechanism
of stress wave attenuation in the HEC system.
It is now natural to inquire about the portion of this

attenuation contributed by the combined dispersion and
rarefaction mechanism in the DRS, compared to the ma-
terial damping effect. This question can be answered by
assessing the effect of the material damping on the overall
wave attenuation. For this, we run the DEM simulation
with zero damping coefficients. The results are shown
in the dotted curve in Fig. 4, which also shows a rapid
drop of Ψ(n) over the space. Comparing the two DEM
cases (i.e., solid and dashed curves), the energy reduc-
tion from the non-damped to the damped DEM results
is 19.3% over the span of 250-particle chain. However,
the potential energy drop even for the non-damped case
is around 76.8% at the end of the chain, compared to
the initial energy level. This implies that the wave at-
tenuation solely due to the combined dispersion and rar-
efaction is more than three times larger than that due to
the damping in the given system. Though the relative
portions can change depending on the system configura-
tions, size, and boundary conditions, this trend overall
supports that the formation of the DRS can be an effi-
cient way of mitigating stress waves without resorting to
material damping or plasticity effects.
In summary, we observed the dispersive rarefaction

shock (DRS) dynamics in the soft chain of 3D-printed
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hollow elliptical cylinders (HECs). We experimentally
and numerically validated the two principal features of
the DRS: the back-tilted wavefront in the form of a rar-
efaction and the oscillatory wave tail in the form of a
dispersive shock. Moreover, we demonstrated that the
HEC system supports a slower propagation of DRS given
a higher striker impact condition, as a result of the strain-
softening nature of this nonlinear dynamical lattice. The
proposed HEC system can be potentially applied to the
impact mitigation system design in various scientific and
engineering applications. Further research can be pur-
sued by modifying the discrete element model (DEM) by
adding more degrees of freedom to capture the higher
modes of wave propagation. Indeed, as discussed in
SM [21], while the phenomenology presented here hinges
on the lowest band of its dynamics, the HEC lattice
bears intriguing characteristics associated with multiple
bands and gaps that are certainly worthwhile of addi-
tional exploration. Future studies also include investi-
gating the role of defects (e.g., breather formation) in
strain-softening systems. The systematic development of
the HEC as a prototypical strain-softening element may
also pave the way for exploring heterogeneous chains in-
volving the alternation of softening and hardening non-
linearities, which may manifest unprecedented nonlinear
phenomena.
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