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We study topological nodes (phase singularities) in electromagnetic wave interactions with struc-
tures. We show that, when the nodes exist, it is possible to bind certain nodes to a specific plane in
the structure by a combination of mirror and time-reversal symmetry. Such binding does not rely on
any resonances in the structure. As a result, the nodes persist on the plane over a wide wavelength
range. As an implication of such broadband binding, we demonstrate that the topological nodes
can be used for hiding of metallic objects over a broad wavelength range.
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A topological node in electromagnetic fields, also
known as a phase singularity, can appear along the axis of
wave propagation (i.e. as in an optical vortex beam), or
transverse to the axis [1–3]. The former case has drawn
significant recent interest due to potential applications
such as in optical communication or small particle manip-
ulation [4–11]. Several aspects of the topological nodes
in the transverse scenario have also been studied before.
Examples include their statistics in random wavefields,
and their general topological structure [12–16].

In the transverse scenario, since the electromagnetic
field vanishes at the topological node, it is natural to
think of using the nodes for ”hiding” purposes. A small
object placed on these nodes will have minimal inter-
action with the electromagnetic fields, and therefore is
hidden from the field. For this purpose then, it would be
important to understand the mechanisms that control
the location of these nodes. Moreover, it is of interest to
design structures in which the location of nodes does not
vary much under change of frequency, since one can then
perform broadband electromagnetic hiding, i.e. to ensure
that the object located at certain positions is invisible
even to broadband incident electromagnetic waves.

In this paper, we show that it is possible to bind the
location of the nodes to a symmetry plane over a broad
wavelength range. The structure under consideration is
a photonic crystal slab under plane wave incidence. The
nodes exist in a wide wavelength range away from the
guided resonances. The restriction of the nodes’ location
is enforced by the mirror symmetry in the structure and
the time-reversal symmetry, and does not rely on any
resonances in the materials or the structure. The bind-
ing occurs despite the fact that the field itself does not
share the full symmetry of the structure, since the wave
is only incident from one side. As an implication of the
broadband binding, we demonstrate that it is possible to
use the nodes to hide objects over a broad wavelength
range.

The generic structure is a photonic crystal slab with a
periodic permittivity in the x direction as

ε =

{
ε0εr(x), −d/2 ≤ z ≤ d/2
ε0, elsewhere

(1)

where ε0 is the vacuum permittivity, εr(x) = εr(x + L),
and L is the period length. The layer is uniform in y.
A simple example of such a structure is an array of rect-
angular dielectric objects in vacuum, shown in Fig. 1a.
We assume s-polarized plane wave (electric field in y-
direction) incidence from −z side. The field distribu-
tion in the structure can be solved by rigorous coupled
wave analysis (RCWA) [17–19]. The electric field in-
tensity distribution at several wavelengths in the non-
diffracting regime (i.e. periodicity smaller than the free
space wavelength) are shown in Fig. 1c-g. The transmis-
sion spectrum of this structure is plotted in Fig. 1b as
a reference. The existence of a node is most evident in
the phasor diagram, where the real and the imaginary
parts of the electric field amplitude are represented by
the x- and y-components of the phasor vectors, respect-
ively. The phasor diagram is also shown in Fig. 1c-g. We
emphasize that in this configuration the electric field is a
complex scalar, and the phasor vectors are not vectors in
the physical space. Inside the regions marked by the red
arrows in Fig. 1d, e, and g, the phasor diagrams show
a vortex shape. Mathematically, the phasor diagram is
a smooth vector field ν : M → R2, i.e. a map from
the manifold M of the x-y plane to R2 [20]. A node
in ν is characterized by its Poincaré index [1, 21], which
is an integer invariant defined as the degree of mapping
ν/|ν| : D → S1, where D is an arbitrarily shaped loop
enclosing the node, and S1 is the unit circle. A non-zero
degree of mapping, e.g. as in a vortex, guarantees the
existence of a node. In Fig. 1d, e, and g we have marked
the indices of the nodes accordingly. Similar arguments,
carried out in the wavevector space, have been previously
used to characterize the topological properties of bound
states in continuum [22]. Here we apply this argument
in real space.

In this fairly simple dielectric structure, the topological
nodes nevertheless exhibit several remarkable features:
(1) the nodes always show up in pairs, and their indices
sum to zero. (2) The nodes persist over a wide range
of wavelengths despite the drastically different overall
field distribution, for example at the wavelengths of 2.5,
2.0 and 1.25L shown in Fig. 1. Most importantly, these
nodes are in fact confined exactly on the z = 0 mirror
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Figure 1. (a) A periodic array of dielectric objects (blue) under plane wave incidence. (b) The transmission spectrum of the
structure in the wavelength range of 1.1-4.0L, where L is the period length. (c)-(g) Field distributions at the wavelengths
of 3.0, 2.5, 2.0, 1.75 and 1.25L. The pseudo-color plot represent the electric field intensity (a.u.). The vectors represent the
phasor diagram. The red arrows indicate the direction of vector flow around a node. The indices of the nodes are marked. The
dielectric box has a size of 0.55× 0.55L with a permittivity of ε1 = 12.

plane, even though the field itself is not mirror symmet-
ric with respect to the z = 0 plane. (3) The nodes may
disappear when a nodal line appears, e.g. in Fig. 1f, or
when they annihilate with each other, e.g. in Fig. 1c for
wavelengths above 3L. In the following, we account for
these features with topological arguments and a micro-
scopic model based on time-reversal and mirror symmet-
ries.
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Figure 2. A demonstration of the gluing procedure. Left:
the field distribution in one period of the structure at the
wavelength of 2.5L. Middle: the field plot is fold up and
glued along the two x-boundaries, forming a cylinder. Right:
the cylinder is bent and glued along the two ends, forming a
torus T 2.

The observation that the nodes show up in pairs in a

period can be understood as a result of the mirror sym-
metry at x = 0, since the mirror image of a node is also
a node with the opposite index [23]. However, there is
a stronger global topological argument that guarantees
this observation, which does not require the mirror sym-
metry. To show this, we resort to a common technique
in differential topology, namely gluing [24]. Gluing re-
quires the vector field along the boundaries to be smooth
and continuous. The structure here has periodic bound-
ary condition in the x direction, which satisfies the re-
quirement. Thus, we can roll up a period and glue its
two edges to form a cylinder, as is illustrated in Fig. 2.
The structure is not periodic in z. However, the dynam-
ics of the phasor vectors in the regions sufficiently far
away from the dielectric structure is known. In the non-
diffracting regime, the electromagnetic field asymptotic-
ally approaches plane waves far away from the grating
layer. A plane wave does not contain any node. There-
fore, the vector field ν has no node in the z � 0.5L and
z � −0.5L regions in Fig. 2. Moreover, same as in a
plane wave, ν rotates with varying z but remains con-
stant for different x. Thus, we can always find an upper
and lower boundary where ν points in the same direc-
tion. With that, we can bend the cylinder and glue its
two ends to form a torus T 2. The magnitude of ν at the
two ends may not always be equal, but in that case we
can simply gradually tune the magnitude of ν along z till
they match on the edge. This process is allowed since it
would not change the existence or the index of any node
[20]. After the gluing process, ν becomes a smooth vec-
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tor field on T 2. Now, the Poincaré-Hopf theorem [25, 26]
states that, for a vector field ν on a ManifoldM pointing
at the outward norm at ∂M , we have:∑

m

ηm(ν) = χ(M) (2)

where m represent the nodes, η is the corresponding in-
dex, and χ(M) is the Euler characteristics of the man-
ifold M, which is a global invariant determined by the
intrinsic topology of M. A torus has no boundary, and
χ(T 2) = 0. Thus, the indices of all nodes in a period
must sum to zero. Furthermore, since nodes with indices
larger than 1 are only emergent [1], it follows that the
nodes in a period must appear in pairs carrying the op-
posite signs, with or without a mirror symmetry.

The topological argument above shows that the nodes
must always show up in pairs. However, it does not pre-
dict the existence or the location of the nodes. Thus, a
microscopic theory is needed to understand the broad-
band binding of the nodes at z = 0. We note that z = 0
is a mirror plane of the structure but not the field, since
the field is only incident from one side. (In fact, one can
prove that a topological node can not exist on any mirror
plane of the electromagnetic field.) In the following, we
show that the broadband binding of the nodes is enforced
by a combination of the mirror symmetry with respect
to z = 0 and the time-reversal symmetry.

The intuition here is to examine the Fourier compon-
ents of the electromagnetic fields, since a node can only
form where the components cancel. Considering light in-
cidence from the top, as a result of the Bloch theorem,
we can decompose the field in the dielectric layer as

E(x, z) =
∑
n≥0

[αn(z) cos(nGx) + βn(z) sin(nGx)]

.
=
∑
n≥0

[fn(x, z) + gn(x, z)]
(3)

where αn(z) is a complex function, and n is an integer.
Here we have assumed an incident wave amplitude of 1.

We now consider the time-reversed scenario, where the
electric field becomes E∗(x, z) . The time-reversed scen-
ario corresponds to having light incident from both sides:
we take the time-reversal of the transmitted and reflected
waves as inputs, and the output is the time-reversal of the
original incident wave. Thus, denoting the transmission
and reflection coefficients as t and r, we have

r∗E(x, z) + t∗E′(x, z) = E∗(x, z) (4)

where E′(x, z) is the field generated by an incident wave
of amplitude 1 from the bottom. Due to the mirror sym-
metry at z = 0, E′(x, z) = E(x,−z). Thus, at z = 0, we
have

(r∗ + t∗) =
E∗(x, 0)

E(x, 0)
(5)

The left-hand side of Eq. (5) is independent of x. Thus,
E∗(x, 0) and E(x, 0) only differ by a global phase factor
independent of x. Since the global phase can be arbit-
rarily set by controlling the phase of the incident wave,
it follows that E(x, 0) can be chosen to be real every-
where on the z-mirror plane. As a result, all fn(x, 0) and
gn(x, 0) must be real as well, i.e. they are either in-phase
or 180◦ out-of-phase to each other. We emphasize that
the argument here only requires the mirror symmetry
with respect to z = 0, but not the mirror symmetry in x
[23].

To understand the implication of this phase constraint,
we consider the evolution of the nodes as a function of
wavelength. In the long-wavelength limit, all Fourier
components are negligibly small except for the lowest
order, f0. The field in the dielectric layer approaches
a plane-wave shape where no topological node can be
found. As the wavelength decreases, the next-lowest or-
der f1 or g1 increases until their amplitude |α1(0)| or
|β1(0)| exceeds |α0(0)|, where the nodes are created on
the z = 0 plane due to the phase constraint. Due to the
mirror symmetry at x = 0 in the structure here, g1 = 0.
|α1(0)| exceeds |α0(0)| near the wavelength of 3L as is
shown in Fig. 3, when two nodes are created at the x = 0
mirror plane. They then move away from x = 0 at shorter
wavelengths, as can be observed in Fig. 1c-e. Once the
nodes appear, they are confined at z = 0.

In fact, the binding at z = 0 is exact to arbitrary
orders. Since all fn and gn are real at z = 0, the sum
(
∑

n≥1 fn +gn) is still real, i.e. it is in-phase or 180◦ out-
of-phase to f0 at z = 0. Thus, as higher order (n > 1)
modes are excited at shorter wavelengths, e.g. at 1.25L
in Fig. 1g, more topological nodes appear at exactly z =
0.

It should be noted that away from z = 0 the field
components may still happen to cancel, where a node is
formed. But those nodes are not bound to any special
locations, and they generally move in a complex fashion
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Figure 3. The amplitudes |α(0)| of the 0th (blue) and 1st
(red) order Fourier components as a function of wavelength.
As wavelength decreases, |α1(0)| increases and exceeds |α0(0)|
near the wavelength of 3L.
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Figure 4. (a) A periodic array of dielectric (blue) and metallic (yellow) objects. The metallic objects have a permittivity of
εm = −3500 + 1467i, and a size of 0.35× 0.05L. (b) Transmission spectra with metallic objects only (black), dielectric objects
only (blue), and both dielectric and metallic objects existing (red). (c) and (d), the field distribution at the wavelength of
2.5L with and without the metal objects as a comparison. The dielectric objects are indicated in the blue shading, while the
metallic object is indicated in the yellow rectangle.

as wavelength changes.

The existence of the topological nodes at z = 0 does
not depend on any resonances in the material or in the
structure. In fact, the nodes will steer clear of a guided
resonance. For example, there is a guided resonance at
the wavelength of 1.75L in the structure (Fig. 1f) [27,
28]. Here, the electromagnetic field does not contain any
topological node, rather it contains nodal lines which do
not carry a topological index. On resonance, the field
distribution can be well approximated by a standing wave
pattern. A standing wave is time-reversal symmetric,
thus it can not carry any topological nodes since a node
flips its sign under time-reversal [23]. Furthermore, a
standing wave is real up to a global phase. Therefore,
the phasor vectors of a standing wave should be largely
parallel to each other, as is observed in Fig. 1f. In general,
we observe topological nodes and their binding to the
z = 0 plane in a wide range of wavelengths away from
the guided resonance.

Due to the broadband binding of multiple topological
nodes at z = 0, the field distribution typically exhibits
deep valleys at z = 0. As an implication, such valleys
can be used to hide objects.

As a demonstration, we perform a set of simulations as
is shown in Fig. 4, where we place a rectangular metal-
lic object centered at the z = 0 plane. Fig. 4b shows
the transmission spectra of 1) the dielectric layer, 2) the
metallic object by itself, and 3) the combination of the
metallic object with the dielectric layer. We observe that
the transmission spectra of the dielectric layer with (red
curve) or without (blue curve) the metallic object are
very close to each other in the broad wavelength range
of 1.1-3.5L, except in a narrow region near 1.75L where
the structure supports a guided resonance. As such, the
metallic object is well hidden in the vicinity of the dielec-
tric objects, even though the metallic object covers 35%
of a period and the object by itself strongly scatters light,
characterized by the low transmission (black curve) in
Fig. 4b. As a visualization, we compare the field dis-

tribution with and without the metallic objects at the
wavelength of 2.5L in Fig. 4c and d. It is clear that due
to the topological nodes at z = 0, the added metallic
object only represents a week perturbation to the elec-
tromagnetic field. As such, the metallic object is invisible
in both the far field and the near field.

We note that the broadband hiding is independent of
the detailed geometry of the metallic objects. Other
shapes of objects can be hidden in the same dielectric
structure as well [23]. We also note that the broadband
hiding effect here is not simply because high-index mater-
ials tend to concentrate light away from the gap regions,
since without the broadband binding of the topological
nodes the metallic objects would typically not be in the
field minimum over a broad wavelength range [23].

The hiding effect demonstrated here, which hides the
added metallic objects in the vicinity of an existing
dielectric structure, is different from the previously dis-
cussed cloaking effects that also apply to small objects
[29–31]. Here, the existing dielectric environment gen-
erating the nodes is not necessarily invisible to external
radiation. Such a hiding capability is important, for in-
stance, when certain parts of an optical device need to
be hidden to avoid any interference with the device’s op-
tical functionality. A typical example is the transpar-
ent electrode [32–34], where one embeds metallic wires
in an optical device as contacts. The device itself, i.e.
the dielectric parts, need to stay visible to perform op-
tical functionalities such as light detection, light emis-
sion, or energy conversion. The electrodes however, need
to be hidden to avoid any disturbance of the electromag-
netic field. Furthermore, while the previously discussed
cloaking effects typically exist in a narrow bandwidth,
the hiding effect demonstrated here does not depend on
any resonances, and allows broadband invisibility.

In summary, we have studied the topological nodes in
electromagnetic fields. We show that it is possible to
bind the location of the topological nodes to a specific
plane using a combination of time-reversal symmetry and
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mirror symmetry. Such binding does not rely on any
resonances in the structure, and is robust over a wide
wavelength range. As an implication, we demonstrate
that the nodes can be used for hiding of metallic objects
in a dielectric environment over a broadband wavelength
range.
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