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We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselec-
tion based on a measurement of their spatial configuration. Typically entangled states of neutral
atoms are engineered via atom-atom interactions. In contrast, in our work we use Hong-Ou-Mandel
interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on
an effective beamsplitter. We verify the presence of entanglement and determine a bound on the
postselected fidelity of a spin-singlet state of (0.62± 0.03). The experiment has direct analogy to
creating polarization entanglement with single photons, and hence demonstrates the potential to
use protocols developed for photons to create complex quantum states with non-interacting atoms.

Neutral atoms have increasingly become a platform for
understanding and characterizing entanglement in many-
body systems and have the potential to become a re-
source for quantum information processing [1, 2]. The
advantage of neutral atoms in quantum processing is
that they can be well-isolated from the environment and
transported spatially in close proximity with little un-
wanted interaction [2, 3]. However, the naturally small
interactions that enable these traits have made creating
entanglement between neutral atoms more challenging.
To deterministically entangle the spin of individual neu-
tral atoms, experimenters have used long-range interac-
tions between Rydberg states [4–6] and the exchange in-
teraction of atoms in their electronic ground state [7–11].
It is also possible to use photons that have interacted
with individual neutral atoms or ions to entangle two
atomic spins [12–16]. Many of the experiments harness-
ing photons to create atomic entanglement draw on the
power of measurement to enable postselection or herald-
ing, which is an increasingly common technique in atomic
physics [12, 13, 17–20].

However, controlled photon-atom interactions are not
required to create entanglement via measurement. In-
dividual bosonic neutral atoms can themselves be inter-
fered and detected, as in recent experiments that real-
ize atom equivalents of the Hong-Ou-Mandel (HOM) ef-
fect [21, 22]. When neutral atoms are non-interacting,
they can be used in place of photons in probabilistic en-
tanglement schemes [23–27]. The additional advantage
of choosing atoms is that many well-developed tools —
addressability, single atom sources, high-efficiency single
particle detection, long-lived memory — can be incorpo-
rated, which are not always accessible with photons. In
this Letter, we show that it is possible to entangle two
non-interacting 87Rb atoms by postselecting on the spa-
tial location of the atoms after their interference on a
beamsplitter.

We implement an effective atomic beamsplitter by de-

localizing atoms between two sides of a double-well po-
tential via a resonant tunnel-coupling [21] (Fig. 1). If the
atoms are in the same spin state — meaning symmetric
in both spin and space — and completely indistinguish-
able, one observes the HOM effect with atoms, where
both atoms coalesce into the same well [1, 21, 22, 28]. If
the atoms are initialized in orthogonal spin states, they
are in a superposition of the symmetric and antisym-
metric spin states and, correspondingly, the symmetric
and antisymmetric spatial states to preserve the total
symmetry of the bosonic wavefunction. Each of these
evolve differently when combined on a 50:50 beamsplit-
ter: The symmetric portion coalesces into the same well.
The antisymmetric portion remains unchanged by the
beamsplitter and therefore the atoms are kept in sepa-
rate wells. Thus, by selecting cases where atoms remain
in separate wells after the beamsplitter, the spins will
be in the maximally entangled (antisymmetric) singlet
state |S0〉 = 1√

2
(|↓, ↑〉 − |↑, ↓〉), where a ket with two ar-

rows represents the joint spin state of the atoms in well
1 and well 2, respectively. We characterize the spin state
after the effective beamsplitter by performing differential
spin manipulations and spin-sensitive detection.

Our work is closely related to common experimental
methods and proposals for optical photons. In this con-
text, it is known that interference of identical photons
and strong measurement, along with phase shifting, is
in principle sufficient to generate entanglement and en-
act quantum gates; this is the basis for linear optical
quantum computing (LOQC) [25, 29–32]. The direct op-
tical analog to our entangling mechanism is a seminal ex-
periment in which polarization-entangled photon states
are generated by interfering two photons of orthogonal
polarization on a 50:50 beamsplitter and postselecting
on coincident detection in the two output modes [24].
Figure 1(c) shows the prototypical example of this ex-
periment with linear optics, where the state is subse-
quently characterized using polarization-selective detec-
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FIG. 1. Extracting entanglement through interference and
postselection. a) Two bosonic atoms are prepared in orthog-
onal spin states and delocalized in the double-well potential
to interfere the atoms via a tunnel coupling, which gener-
ates a state of interest ρ (purple dashed line). A differen-
tial spin-dependent energy shift between the wells, achieved
when the wells have different depths (gray box), and a global
microwave π/2 spin-rotation are used to characterize entan-
glement in ρ [35]. b) The four possible measurement out-
comes (blue boxes). Atoms found in separate traps, i.e., in
the |1, 1〉 spatial state, are in the maximally entangled sin-
glet spin state |S0〉 = 1√

2
(|↓, ↑〉 − |↑, ↓〉) (purple dashed box).

Atoms in the same well are in the symmetric (triplet) spin
state |T0〉 = 1√

2
(|↓, ↑〉+ |↑, ↓〉). c) Photon analogy. Sin-

gle photons with orthogonal polarization are overlapped on
a 50:50 beamsplitter. When a photon is detected in each out-
put mode, the polarization of the two photons is maximally
entangled. The entanglement is characterized with indepen-
dent polarization-rotations and polarization-sensitive detec-
tion [24].

tors and arbitrary polarization rotations. By comparing
the coincidence counts for particular sets of path rota-
tion angles φ1 and φ2, Ref. [24] demonstrated that the
correlations between the two photon polarizations vio-
late Bell’s inequalities. Here, our goal is to demonstrate
that an analogous measurement-based protocol for neu-
tral atoms generates entangled states that could be used
as a resource in quantum information processing or in
construction of non-trivial many-body states. Therefore,
we verify spin entanglement of the two atoms by demon-
strating that the singlet state fidelity FS0

exceeds 1/2.

The experiment begins by isolating two single 87Rb

atoms using collisional blockade in two optical tweezers
separated by d = 2.09 µm [33]. The presence (or ab-
sence) of an atom in each well of the double-well potential
is recorded in an initial population image with photons
collected during a period of sub-doppler cooling. This
is followed by optical pumping and three-dimensional
Raman sideband cooling to initialize both atoms in the
|↑〉 ≡ |F = 2, mF = 2〉 hyperfine spin state of the 5 S1/2

electronic orbital and in the three-dimensional motional-
ground-state in (90± 10)% of trials [34]. We then ini-
tialize the atom in well 1 in the |↓〉 ≡ |F = 1, mF = 1〉
state while keeping the atom in well 2 in |↑〉. To achieve
this, we take advantage of an added spin-dependence of
the trapping potential (due to the vector light shift from
a small component of circular polarization in the trap
light) that results in a differential energy shift h̄Ωs of the
spin transitions when the wells have different depths. For
our chosen trapping depths, the |↑〉 ↔ |↓〉 transition for
the two atoms are spectrally resolved by Ωs/2π = 153
kHz, and we selectively rotate the spin of the atom in
well 1 with a global microwave drive [35].

After state preparation, the separation of the optical
tweezers is adiabatically changed to bring the gaussian
beam centers to d = 900 nm, and the trap depth is re-
duced to V0/h = (14.9± 0.4) kHz per tweezer. This re-
alizes a tunnel-coupling between well 1 and well 2 of the
double-well potential with 2h̄J giving the energy differ-
ence between the ground-band spatially symmetric and
antisymmetric single-particle eigenstates of the double
well [9, 21]. An atom initially localized in one well will
be transferred to the other well with a probability that
oscillates as Ptun (t) = 1

2 (1− cos (2J (t− t0))). Here t0 is
an offset that stems from the tunneling initialization. In
the trap used for tunneling, the on-site interaction energy
U is small enough, with J

U > 3, that the inter-particle
interactions do not significantly alter tunneling dynam-
ics [7, 21, 35, 36]. After a variable period of tunneling in
the double-well potential, the trap depth is diabatically
increased to at least V0/h = 180 kHz to freeze tunnel-
ing dynamics. It is at this point that the state ρ [purple
in Fig. 1(a)] has been created; additional operations are
performed to verify spin entanglement in the postselected
state.

Figure 2 shows the tunneling dynamics of atoms in the
double well potential to demonstrate the action of our ef-
fective atomic beamsplitter. Note that in all experiments
presented in this manuscript, a global π/2 spin-rotation

exp
(
−iπ2 Ŝx

)
, where Ŝx = 1

2 (σ̂1
x + σ̂2

x), is applied after

the beamsplitter. This is the analog of setting the two
waveplate angles in the photon experiment [Fig. 1(c)]
to φ1 = φ2 = π/4. The spin rotation does not affect
the population measurements, and hence is traced out in
Fig. 2. It will be crucial, however, for inferring correla-
tions from the projective spin measurements presented in
Fig. 3.
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Figure 2(a) shows the probability P10 for a trial to end
in the |1, 0〉 state, where a ket |i, j〉 identifies the state
with i atoms in well 1 and j atoms in well 2. The blue
(orange) curve is for the subset of trials in which the ini-
tial population image records a single atom in well 1 (well
2). At tB = 2π

8J − t0 ' 0.9 ms, the single-particle popula-
tions cross at P10 = 0.5 and the beamsplitter operation
is realized. The tunneling oscillations in Fig. 2(a), which
extend to times t � tB , are indicative of the spatial co-
herence of the atom.

Figure 2(b) shows the corresponding probability P11

for a trial to end in the |1, 1〉 state for the subset of tri-
als in which the initial population image records a single
atom each in well 1 and well 2. In the ideal situation
P11 = 1

2 + 1
4 [1 + cos (4J(t− t0))]. In our measurements

we do observe that the resulting probability for the atoms
to end the tunneling sequence in separate wells oscillates
at 2π/(4J), but never goes below P11 = 0.5 (indicated
by the purple dashed line), as expected for distinguish-
able bosons. The cyan dot-dashed line represents the
maximum expected P11 based on the population dynam-
ics measured for single-particle tunneling. Note that, for
this figure only, the quantity P11 is corrected for single
particle loss; this is because imaging can not distinguish
a doubly occupied well from atom loss due to the colli-
sional blockade [21, 35, 37].

We now focus on the measurement-based entanglement
analysis that relies on postselecting the spatial state af-
ter the beam splitter action. The results are filtered to
select only trials in which a single atom is recorded in
each well in the initial population image and the |1, 1〉
spatial state is measured in the final imaging sequence.
Filtering the trials on this condition not only removes
trials where the final population is |0, 2〉 or |2, 0〉, but
also removes instances where an atom is lost or the state
detection protocol has an error. For example, detection
errors could come from imperfect global spin-rotations
or spurious large background counts. A detailed table
of the possible image outcomes for a single experimen-
tal trial, as well as their interpretation in the context of
this experiment, is presented in the supplementary mate-
rial [35]. The postselection required for this experiment is
enabled by a spin-sensitive imaging sequence that allows
us to extract both spatial and spin information from each
experiment trial. Two images are taken, each of which
selectively measures the population in the |↑〉 spin state.
In between the two images, a global π spin-rotation is ap-
plied to exchange the |↑〉 and |↓〉 populations [35, 38, 39].

In a first experiment, we reanalyze the data used for
Fig. 2(b) to study correlations in the joint spin state ρ
(after postselection), as a function of the tunneling time.
Specifically, we evaluate the parity of the measured spin
state Π =

∑
j Pj(−1)j , where Pj is the probability to

measure j atoms in |↑〉, after the global π/2 spin-rotation
described above. This reanalysis gives the parity shown
in Fig. 3(a), which oscillates at a frequency 4J with the

( )
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FIG. 2. a) Measured P10 as a function of tunneling time for
a single atom initialized in |1, 0〉 |↓〉 (blue) or |0, 1〉 |↑〉 (or-
ange). The green dotted line marks the first time the 50:50
beamsplitter is realized at time tB . b) Measured P11 after
initializing the state |1, 1〉 |↓, ↑〉. Also shown are the distin-
guishable atom limit (purple dashed line) and the maximum
probability for the atoms to be in separate wells (dot-dashed
cyan line) calculated from the single-atom tunneling contrast
in (a). All data points are plotted with error bars indicating
the standard error of measurement. The fits shown are per-
formed using a standard least-squares minimization with data
points weighted by their statistical error, and the shaded re-
gions indicate the 95% confidence interval for the mean values
predicted by the fits.

minima in parity coinciding with the minima in P11 from
Fig. 2(b) (where a 50:50 beamsplitter operation is real-
ized). With the knowledge that each spin is prepared in
either |↑〉 or |↓〉 and that the tunneling dynamics conserve
spin, we know a spin parity Π 6= 0 is evidence of corre-
lations in the joint spin state ρ. In particular, Π < 0
indicates a non-zero projection onto |S0〉, which is an
eigenstate of the global rotation and has Π = −1 [35].

Next, for a fixed tunneling time tB that realizes a
50:50 beampslitter, we vary the length of time that the
atoms are held in an effective magnetic field gradient be-
tween the two wells. This allows us to study the spin
coherences present after the effective atomic beamsplit-
ter. The effective gradient is provided by a spin-state-
dependent relative energy shift h̄Ωg, which is introduced
with the same technique as the spin-addressing shift h̄Ωs,
but is significantly smaller with Ωg/2π ≤ 0.25 kHz [35].
The spin-dependent energy shift results in the differen-
tial phase accumulation Ωgt of the |↑, ↓〉 state with re-
spect to the |↓, ↑〉 state [Fig. 1(a)]. This phase accumu-
lation ideally leads to the spin state evolution |Ψ (t)〉 =
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FIG. 3. Measurements of the spin parity postselected on the
|1, 1〉 state after performing global microwave spin-rotations.
a) Parity as a function of tunneling evolution time. The min-
ima coincide with tunneling times tB in Fig. 2 (green dotted
lines). The functional form of the oscillations is expected due
to postselection, as discussed in [35]. b) For a fixed tunnel-
ing evolution time of tB ' 0.9 ms, a differential phase Ωgt is
accumulated between the |↓, ↑〉 and |↑, ↓〉 spin states before
performing the global spin-rotation. For this fit, we calculate
a reduced chi-squared of 1.48 with 11 degrees of freedom [35].
c) The same experiment as (b), but for a fixed tunneling time
of t� tB for which the spins remain in a separable state. In
all plots, the grey bars are a visual representation of the maxi-
mum amplitude of parity oscillations A = ±2(ρ↑↑,↑↑ρ↓↓,↓↓)

1/2

that are possible for a separable density matrix, under the
assumption that there are no coherences between |↑, ↑〉 and
|↓, ↓〉. See Fig. 2 caption for explanation of error bars.

1√
2

(
|↓, ↑〉 − eiΩgt |↑, ↓〉

)
, periodically rotating the singlet

state to a triplet state |T0〉 = 1√
2

(|↓, ↑〉+ |↑, ↓〉) after

a time t = π/Ωg. Importantly, after the global π/2
spin-rotation the |T0〉 state has +1 parity, which results
in the oscillation of the parity as a function of the ac-
cumulated differential phase Ωgt, as seen in Fig. 3(b).
We fit the oscillation of the measured parity as Π (t) =
CΠ cos (Ωgt+ θ0)+p0, which gives CΠ = − (0.36± 0.03),

Ωg/2π = (237± 4) Hz, consistent with the expectation
for Ωg [35]. These parity oscillations will have CΠ = −1
for a perfect singlet state. The offsets in phase and parity
are θ0 = (0.46 ± 0.19) and p0 = (0.015 ± 0.025), respec-
tively. We perform a non-parametric bootstrap analysis
to check the consistency of the analysis [35]. For compar-
ison, we perform the same set of rotations when the tun-
neling time is short compared to tB , such that the spin
state is primarily |↓, ↑〉 and observe the reduced parity
signal shown in Fig. 3(c).

After perfect state preparation and an ideal beamsplit-
ter operation, the spin state postselected on the atom
location |1, 1〉 will be the maximally entangled spin sin-
glet state |S0〉. The singlet state fidelity is a standard
entanglement witness; a fidelity FS0 exceeding 1/2 is
sufficient to both verify entanglement and, given many
copies of the same state, to distill arbitrarily good sin-
glet states [40, 41]. Here, the fidelity is given by FS0

=
〈S0| ρ |S0〉, where ρ is the 4 × 4 density matrix of the
postselected joint spin state (after the beamsplitter, but
before the spin manipulations), which becomes

FS0 =
1

2
(ρ↑↓,↑↓ + ρ↓↑,↓↑)− Re (ρ↑↓,↓↑) , (1)

with ρi,j indicating the density matrix elements for the
possible spin configurations i and j.

These density matrix elements can be bounded by com-
bining the measurements described above with exter-
nal characterizations of our state preparation and single-
spin coherence [35]. Specifically, a lower bound on the
first two terms in Eqn. 1 is given by ρ↑↓,↑↓ + ρ↓↑,↓↑ ≥
(0.870± 0.018), where the spin populations are deter-
mined by a separate measurement of the spin popula-
tion after the initial state preparation. This represents
a lower bound because the HOM effect results in atoms
with aligned spins contributing relatively less due to post-
selection on |1, 1〉. The parity oscillation contrast mea-
sured in Fig. 3(b) is ideally a direct measurement of the
third term in Eqn. 1, i.e., CΠ = 2 Re (ρ↑↓,↓↑). This equal-
ity remains valid by assuming, as justified in [35], that no
coherences exist between the |↑, ↑〉 and |↓, ↓〉 states (be-
fore the two spin manipulations). With these measure-
ments, we calculate a postselected singlet state fidelity of
FS0
≥ (0.62± 0.03).

We note that the finite contrast of the parity oscilla-
tions, while large enough to verify the presence of entan-
glement, indicates imperfections in the spin preparation
and tunneling initialization [21]. The measured parity
contrast is consistent with expectations from separate
measurements of the atomic HOM interference contrast,
and can be improved with higher-fidelity state prepara-
tion and tunneling procedures [35].

Through the interference of neutral atoms, we have
demonstrated that postselection on the spatial config-
uration of atoms can be used to isolate spin-entangled
states. Measurement-based schemes can be extended to



5

entanglement of larger and more complex systems by de-
termining the success of the entire operation based on the
final population distribution [26, 27, 32]. Alternatively,
the presence of entanglement can be heralded through
measurement of a subsystem, which makes the desired
state available for subsequent steps in a larger proto-
col [42]. The simplest way to envision this possibility is
to introduce a strong on-site interaction, such as through
photoassociation, at the end of the protocol to expel spa-
tial states with two atoms on a well, while leaving states
with one atom per well unaffected [43]. It is also pos-
sible to herald the presence of an entangled state with-
out adding interactions by introducing ancilla atoms and
wells in analogy to demonstrations with photons [44].
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