
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Three-Body Recombination near a Narrow Feshbach
Resonance in ^{6}Li

Jiaming Li, Ji Liu, Le Luo, and Bo Gao
Phys. Rev. Lett. 120, 193402 — Published 10 May 2018

DOI: 10.1103/PhysRevLett.120.193402

http://dx.doi.org/10.1103/PhysRevLett.120.193402


Three-body recombination near a narrow Feshbach resonance in 6Li

Jiaming Li,1, 2 Ji Liu,2 Le Luo,1, 2, ∗ and Bo Gao3, †

1School of Physics and Astronomy and Tianqin Research Center for Gravitational Physics,
Sun Yat-Sen University, Zhuhai, Guangdong, China 519082

2Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202
3Department of Physics and Astronomy, Mailstop 111, University of Toledo, Toledo, OH 43606

(Dated: March 12, 2018)

We experimentally measure, and theoretically analyze the three-atom recombination rate, L3,
around a narrow s wave magnetic Feshbach resonance of 6Li-6Li at 543.3 Gauss. By examining
both the magnetic field dependence and especially the temperature dependence of L3 over a wide
range of temperatures from a few µK to above 200 µK, we show that three-atom recombination
through a narrow resonance follows a universal behavior determined by the long-range van der
Waals potential, and can be described by a set of rate equations in which three-body recombination
proceeds via successive pairwise interactions. We expect the underlying physical picture to be
applicable not only to narrow s wave resonances, but also to resonances in nonzero partial waves,
and not only at ultracold temperatures, but also at much higher temperatures.

Molecule formation through three-body recombination
is one of the most fundamental chemical reactions as it
pertains to the very origin of molecules [1, 2] and their
relative concentration to atomic species. It is also the key
to understanding the initial stages of condensation where
atoms form molecules, which further recombine with
other atoms or molecules to grow into bigger molecules,
clusters, and eventually to mesoscopic and macroscopic
objects. As a reflection of the fundamental difficulties in
quantum few-body systems, progress on three-body re-
combination has been excruciatingly slow. Fundamental
questions such as the relative importance of direct (back-
ground or nonresonant) and indirect (successive pairwise
or resonant) processes [3, 4] seem as fresh as they were
decades ago [5, 6]. Unlike deeply bound few-body bound
states, for which large basis expansion works to a degree
(see, e.g., [7]), three-body recombination occurs at much
higher energies around the three-body breakup threshold
where the number of open channels for most atoms other
than helium goes to practically infinite, making standard
numerical methods [8] impractical.

Cold-atom experiments have provided the experimen-
tal background for breakthroughs in few-body physics.
In such experiments, two-body interaction can be pre-
cisely controlled via a Feshbach resonance (FR) [9], and
remarkably, manifestations of three-body recombination
have become one of the most routinely measured quanti-
ties through trap loss. Vast amount of data thus gen-
erated has enabled considerable progress in few-body
physics, first in elucidating the Efimov universality [10–
13], and more recently in discovery and exploration of the
van der Waals universality (see, e.g., Refs. [14–20]). Still,
much of the progress has so far been limited to the zero
temperature, to broad s wave FR’s, and to the Efimov
regime where the s wave scattering lengths among the
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interacting particles are much greater than the ranges of
interactions as measured by their corresponding van der
Waals length scales. While experiments in other regimes
are possible (see, e.g., Ref. [21, 22]), they have not re-
ceived as much attention partly due to the scarcity of
the corresponding theories. Further theoretical progress,
as well as exciting experimental developments such as
state-to-state measurements [23], promise much further
progress in few-body physics and chemistry.

In this Letter, we first reassert that universal behaviors
for few-atom and many-atom systems exist much beyond
the zero temperature and beyond the s wave, as first
suggested some years ago [24]. They exist to 1 kelvin
regime similar to the corresponding quantum-defect the-
ory (QDT) for two-body interactions [25, 26], and can be
further extended to greater temperature regimes through
multiscale QDT [27]. Such broader-sense van der Waals
universal behaviors can be mathematically rigorously de-
fined in a way similar to the definitions of universal equa-
tions of states at the van der Waals length scale [28–30].
They will be investigated as a part of a QDT for few-atom
and many-atom systems. By expanding the region of uni-
versal behavior beyond the zero temperature and beyond
a broad s wave resonance, one will finally make the con-
nection between studies of idealized few-body systems
and real chemistry [2–6, 8]. We take a step in this direc-
tion here by experimentally measure and theoretically
analyze the three-atom recombination around a narrow
s wave magnetic FR of 6Li-6Li around 543.3 Gauss. We
show that at ultracold, but finite, temperatures, three-
body recombination is dominated by the indirect process
if there exists a narrow resonance within kBT above the
threshold. We further show that the rate constant de-
scribing this successive pairwise process follows a univer-
sal behavior determined by the long-range van der Waals
potential. An analytic formula is presented for the rate
constant describing both its dependence on the tempera-
ture and its dependence on the resonance position, which
in our case is tunable via a magnetic field.

Experiment: We prepare a gas of 6Li atoms in the
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two lowest hyperfine states of F = 1/2,mF = ±1/2
[labeled as a (+1/2) and b (−1/2) state, respectively]
in a magneto-optical trap. The pre-cooled atoms are
then transferred into a crossed-beam optical dipole trap
(ODT) made by a fiber laser with 100 watt output.
The bias magnetic field is quickly swept to 330 G to
implement evaporative cooling [31, 32]. A noisy radio-
frequency pulse is then applied to prepare a 50:50 spin
mixture. At 330 G, the trap potential can be lowered
down to 0.1% of the full trap depth (the full trap depth
is around 5.6 mK) to obtain a degenerate Fermi gas. Af-
ter that, the magnetic field is swept well above the narrow
FR at 550 G to calibrate the temperature and the ini-
tial atom number N0. Here the s-wave scattering length
of a-b state is close to the background scattering length
of approximately 0.96β6, for which the gas is weakly in-
teracting (here β6 := (2µC6/~2)1/4 is the van der Waals
length scale for 6Li-6Li interaction [25]). The tempera-
ture of a weakly interacting Fermi gas is then measured
by fitting the 1-D density profile with a finite temperature
Thomas-Fermi distribution [33]. To study the tempera-
ture dependence of three-body recombination rate, atom
clouds are prepared in a temperature range between 4
µK and up to 225 µK by controlling the final trap depth
and the evaporative cooling time.

To study three-body recombination rate around the
narrow FR at 543.3 G, the magnetic field is fast swept
from 550 G to a target field Bt near the narrow reso-
nance, where we hold atom cloud for a time duration t.
With techniques such as recording the real-time magnets
current to monitor the fluctuation of the magnetic field,
a field resolution of better than 0.09 G is achieved for all
of our data sets. [See the Supplemental Material.] Af-
ter the holding period, the number of atoms left in the
trap, N(t), and the Gaussian widths of the cloud, σx(y,z),
are extracted from the 2-D column density of the absorp-
tion images. To avoid the high column density induced
error of the atom number, we turn off the optical trap
after the holding period and take the absorption images
of time-of-flight clouds.

Our atomic vapor is a 2-component thermal gas with
Na atoms in state a and Nb atoms in state b. If the
densities for atoms in states a and b start out the same,
they will remain the same, namely na = nb =: n, and
decay with the same rate, by

dn

dt
= −L3n

3, (1)

where L3 is the three-body recombination rate. The to-
tal atom number Na = Nb =: N is determined by in-
tegrating the density of the whole cloud, where we as-
sume the profile is a Gaussian of the form n(x, y, z) =
n0 exp[−x2/(2σ2

x) − y2/(2σ2
y) − z2/(2σ2

z)] with n0 being
the atom density at the center of the cloud. The integra-
tion gives us

dN(t)

dt
= − L3

(2
√

3π)3σ2
xσ

2
yσ

2
y

N3(t) , (2)

implying that 1/N2 has a linear dependence on the hold-
ing time t with

1

N2(t)
=

2L3

(2
√

3π)3σ2
xσ

2
yσ

2
y

t+
1

N2(0)
. (3)

By fitting experimental 1/N2 to Eq. (3), we extract L3.
[See the Supplemental Material.]

We measure L3 as a function of the magnetic field at
various temperatures from 4.2µK to 225 µK. They range
from at least one Fermi temperature TF to well above TF
and are all in the thermal gas regime. [See the Supple-
mental Material.] The results are shown in Fig. 1, and
will be compared with theory.
Theory: Our theory describes three-body recombina-

tion in a thermal gas and via a narrow resonance as
an indirect, successive pairwise process. A narrow res-
onance can be treated as a bound molecular state weakly
coupled to a continuum. The time evolution of atomic
number densities, na and nb for atoms in states a and b
respectively, and the number density nab of metastable
molecules in the resonance state (ab)r, are described by
a set of rate equations

dna
dt

= + (Γr/~)nab −Kabnanb

−KM
ADnanab +KBr

ADnanab +KBr
ADnbnab , (4a)

dnb
dt

= + (Γr/~)nab −Kabnanb

−KM
ADnbnab +KBr

ADnbnab +KBr
ADnanab , (4b)

dnab
dt

=− (Γr/~)nab +Kabnanb

−KADnanab −KADnbnab . (4c)

Here Γr is the width of the resonance. Kab is the rate
for the formation of metastable molecules via two-body
collision at temperature T . It is related to the resonance
width Γr by

Kab = (Γr/~)(
√

2λT )3(2lr + 1)e−εr/kBT , (5)

for a resonance in partial wave lr located at energy εr.
Here λT := (2π~2/mkBT )1/2 is the thermal wave length
of an atom at temperature T . The KM

AD in Eq. (4) is
the rate of atom-dimer interaction leading to the for-
mation of a stable molecule, namely for the processes
of a + (ab)r → a + (ab)M and a + (ab)r → b + (aa)M ,
or b + (ab)r → b + (ab)M and b + (ab)r → a + (bb)M .
KBr
AD is the rate of breakup of a metastable molecule via

a + (ab)r → 2a + b or b + (ab)r → a + 2b. KAD =
KM
AD + KBr

AD is the total inelastic and reactive rate for
atom-dimer interaction. This rate equation ignores the
contribution from the direct three-body process to focus
on the contribution from the indirect process, which will
be shown later to dominate at cold temperatures.

The seemingly complex rate equation, Eq. (4), simpli-
fies if the Γr and the time of measurement have allowed
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(a)  T = 4.2 mK
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(b)   T = 41 mK
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(c)                  T =  75 mK
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(d)               T = 146 mK
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(e)                T = 225 mK

FIG. 1. L3(T,B) as a function of the magnetic field B at tem-
peratures 4.2µK (a), 41µK (b), 75µK (c), 146µK (d), 225µK
(e). The red lines are the fits to theory to be discussed later.
The magnetic FR crosses the threshold at B0 = 543.25 G.
The trap losses for B < B0 are due to higher-order processes
that are not considered in this work.

nab to reach a steady state, characterized by dnab/dt = 0.
In the steady state, one obtains

nab =
(Γr/~)

(Γr/~) +KAD(na + nb)
23/2λ3

T (2lr + 1)e−εr/kBT .

(6)
Under the further initial condition of na(t = 0) = nb(t =
0), corresponding to our experiment, and the condition of
Γr/~� KAD(na+nb), we obtain in steady state na(t) =
nb(t) =: n(t) and satisfies Eq. (1) with L3 given by

L3(T, εr) = 3KM
AD(T, εr)(

√
2λT )3(2lr+1)e−εr/kBT . (7)

All the required conditions are well satisfied in our exper-
iment. We caution, however, that the typical three-body
rate equation, Eq. (1), should not be taken for granted
for indirect processes. They can have other behaviors
under different conditions.

Through Eq. (7), the rate equation, Eq. (4), reduces
the understanding of L3 to the understanding of KM

AD
which is the rate for the formation of bound molecules in
atom interaction with a metastable dimer. This bimolec-
ular process differs from the typical atom-(truly bound)
dimer interaction in that its inelastic component does not
always leads to the formations of bound molecules even
in the limit of zero atom-dimer energy. It can also lead to
the breakup of the metastable dimer, resulting in three
free atoms. Our theory for KM

AD is based on the mul-
tichannel quantum defect theory (MQDT) for reactions
and inelastic processes as outlined in Ref. [34]. Following
an analysis similar to what led to the quantum Langevin
(QL) model for reactions [34, 35], we obtain

KM
AD(T, εr) = sADK

2√
π

∫ ∞
0

dxx1/2e−x

×
∞∑
l=0

Mlrl(εr + kBTx)W(6)
url (Tsx) . (8)

Here sADK is the rate scale for atom-dimer interaction with
a van der Waals −CAD6 /R6 long range potential. More
specifically, sADK := π~βAD6 /µAD, where µAD is atom-

dimer reduced mass and βAD6 := (2µADCAD6 /~2)1/4

is the length scale associated with the atom-dimer
van der Waals potential. Mlrl(εf = εr + εAD) :=∑
f∈M |(Sceff)fi|2 is a short-range branching ratio for

transitions into bound molecular states characterized by
set {M}, with Sceff being the effective short-range S ma-
trix characterizing atom-dimer, namely three-body in-
teraction within the range of van der Waals length scale

[25, 34]. W(6)
url (εs) is the universal partial inelastic and

reactive QL rate for partial wave l [34]. Ts := T/sADT
is a scaled temperature, with sADT being the temper-
ature scale give by sADT := sADE /kB where sADE :=
(~2/2µAD)(1/βAD6 )2 is the energy scale associated with
βAD6 .

Equations (7) and (8) provide a foundation for un-
derstanding the universal behaviors of three-body re-
combination via a narrow resonance over a wide range
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T (µK) δT (µK) KM
AD (10−10 cm3/s) δKM

AD (10−12 cm3/s)

4.2 0.2 1.04 8

41 4 0.878 7

75 4 0.803 6

146 7 0.794 6

225 11 0.720 5

TABLE I. The measured results and error bars of KM
AD(T )

of energies and temperatures. We focus here on a s
wave resonance (lr = 0) and on the ultracold temper-
ature regime of T � sADT (namely Ts � 1), to derive
an analytic formula for L3 that is most useful in cur-
rent experiments. Using the unitarity of an S matrix,
we can write Mlrl(εf ) = 1 −

∑
f∈Br |(Sceff)fi|2, namely

in terms of the short-range branching ratio into the 3-
body breakup channels {Br}. Taking advantage of the
short-range S matrix being insensitive to energy and an-
gular momenta [25, 36], the short-range branching ra-
tio to bound molecular states is approximately a con-
stant Mlr=0l=0(εf ) ≈ M with M being a dimension-
less 3-body parameter related to Sceff and constrained by
0 < M ≤ 1. Substituting this result into Eq. (8), we
obtain for an s wave resonance (lr = 0) in the ultracold
region of T � sADT

KM
AD(T, εr) ≈MK

QL(6)
AD (Ts) , (9)

with K
QL(6)
AD (Ts) being the universal QL rate that is well

approximated in the ultracold s wave region by [34]

K
QL(6)
AD (Ts) ≈ sADK 4ā

(6)
sl=0

(
1−

4ā
(6)
sl=0√
π

T 1/2
s

)
, (10)

where ā
(6)
sl=0 = 2π/[Γ(1/4)]2 ≈ 0.4779888 is a universal

number that represents the scaled mean s wave scattering
length for a −1/R6-type van der Waals potential [37].

Substituting Eq. (9) into Eq. (7), we obtain

L3(T, εr) ≈ 3MK
QL(6)
AD (Ts)(

√
2λT )3e−εr/kBT . (11)

In the presence of a narrow s wave resonance within
an ultracold energy range of the order of kBT above
the threshold, Equation (11) gives an analytic descrip-
tion of the three-body recombination rate L3 as a func-
tion of both the temperature and the resonance position,
in terms of a single dimensionless three-body parameter
0 < M ≤ 1. The resonance can in principle be of any
origin, but a magnetic FR offers a unique opportunity
to tune the resonance position, and thus to test the pre-
dicted dependence on εr.

Comparison between theory and experiment: For 6Li,
using C6 = 1393.39 a.u. [38] for the atom-atom po-
tential, we have CAD6 ≈ 2C6 = 2786.78 a.u., from
which we have βAD6 = 79.8935 a.u., sADT = 3383.85 µK,
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FIG. 2. The rate constant KM
AD(T ) near the 6Li narrow s-

wave FR resonance at 543.25 G. The red solid line is a fit of
our theoretical model, Eqs. (9) and (10), to our experimental
measurements from which the three-body parameter M =
0.25 ± 0.01 is extracted.

and sADK = 2.1035 × 10−10 cm3/s. For our particular
Feshbach resonance, the resonance position is given by
εr = µr(B − B0) with µr = 1.98µB being the differen-
tial magnetic moment for the resonance [9]. Equation (7)
now gives us

L3(T,B) ≈ 3KM
AD(T )(

√
2λT )3 exp

[
−µr(B −B0)

kBT

]
.

(12)
Figure 1 shows the fits of this equation to experimen-
tal loss spectra, giving experimental results of KM

AD(T )
at five different temperatures, tabulated in Table I and
plotted in Fig. 2. Our result for KM

AD at the lower end
of the temperatures, 4.2 µK, is consistent with the ear-
lier result of Hazlett et al. [21]. Figure 2 further shows
that the temperature dependence of the rate KM

AD(T )
is well described by analytic formulas, Eqs. (9) and
(10), a fit to which gives us the three-body parameter
M = 0.25± 0.01, consistent with 0 < M ≤ 1.
Discussions and conclusions: We have measured and

analyzed three-body recombination around a narrow s
wave resonance and in thermal gas regime. The res-
onance is much narrower than kBT and is located in
a neighborhood of kBT above the threshold. We have
shown that the recombination follows a universal behav-
ior determined by the van der Waals potential with a
single three-body parameter M . When applied to a mag-
netic FR, the theory gives the line shape of the Feshbach
spectrum, namely L3 vs B, described by Eq. (12). It
shows that the line shape is temperature-dependent and
has a width of the order of kBT/µB (see also Ref. [21]).
Other than the details of M , the results are equally appli-
cable to identical bosons and easily generalized to other
cases.

The theory further shows that in the presence of a nar-
row s wave resonance within kBT above the threshold,
the indirect process has a rate of the order (~/m)β6λ

3
T ,
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which, at ultracold temperatures of T � sT , is much
greater than those for the direct processes. For bosons, it
is greater by a factor of (λT /β6)3 since the direct process
has a rate of the order (~/m)β4

6 [39, 40]. The enhance-
ment factor is even greater, by another (sT /T ), for our
2-component fermion case for which the direct process
has a rate of the order (~/m)β4

6(T/sT ) [39, 40]. Thus at
ultracold temperatures, the indirect process dominates
the three-body recombination if there is a narrow s-wave
resonance within kBT above the threshold.

Many of the concepts of this work are applicable to
resonances in nonzero partial waves (see, e.g., Refs. [41–
44]), the understanding of which will further expand the
temperature regime of three-body physics towards prac-
tical chemistry [2–6, 8]. More measurements of M for
other narrow resonances and other systems will further

stimulate a deeper understanding of this three-body pa-
rameter. It can be expected to be related in a universal
manner to short-range Kc matrix parameters Kc

S and
Kc
T for atom-atom interaction in (electronic) spin singlet

and triplet, respectively [26]. Such a relationship, when
revealed and understood, would signal the arrival of a
QDT for few-atom systems, and will represent a big step
forward in few-body physics and in chemistry.
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