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We point out the existence of a new general relativistic contribution to the perihelion advance of
Mercury that, while smaller than the contributions arising from the solar quadrupole moment and
angular momentum, is 100 times larger than the second-post-Newtonian contribution. It arises in
part from relativistic “cross-terms” in the post-Newtonian equations of motion between Mercury’s
interaction with the Sun and with the other planets, and in part from an interaction between
Mercury’s motion and the gravitomagnetic field of the moving planets. At a few parts in 106 of the
leading general relativistic precession of 42.98 arcseconds per century, these effects are likely to be
detectable by the BepiColombo mission to place and track two orbiters around Mercury, scheduled
for launch around 2018.

PACS numbers:

INTRODUCTION

The perihelion advance of Mercury is one of the iconic
tests of Einstein’s general theory of relativity. The story
began as a crisis of 19th-century Newtonian dynamics,
when Le Verrier pointed out in 1859 [1] that a tally of
the perturbations of Mercury’s orbit induced by the New-
tonian gravitational attraction of the other planets fell
short of accounting for the observed advance of the peri-
helion by an amount that was 43 arcseconds per century
(here we use the modern value). Notwithstanding imag-
inative attempts to resolve this discrepancy by postulat-
ing an intramercurial planet (dubbed “Vulcan”) or by
tweaking the Newtonian inverse square law, it was still
an unsolved problem when Einstein began his quest for
relativistic theory of gravity in 1907 [2]. In fact, he used
the perihelion advance problem as a filter for his various
preliminary theories. Although he was already becom-
ing dissatisfied with the theoretical properties of the en-

twurf, or “draft” theory that he had developed in 1912
with Marcel Grossmann, he finally rejected it because it
failed to give the right answer for the Mercury discrep-
ancy. In November 1915, when everything seemed to be
falling into place theoretically for his latest attempt, the
tipping point occurred when he saw that the theory gave
the correct value for the missing perihelion advance. He
later wrote that this discovery gave him “palpitations of
the heart” (see, for example Sec. 14c of [3]).

The perihelion advance became a “hot topic” again in
the 1960s, when Dicke and collaborators claimed to have
shown, through observations of the shape of the solar
disk, that the Sun was sufficiently oblate that the New-
tonian contributions of the modified solar potential would
contribute four arcseconds per century (as/cy) to the per-
ihelion advance, thus invalidating general relativity, and
supporting Brans and Dicke’s recent scalar-tensor theory
of gravity, which predicted only about 39 as/cy [4].

Since the 1970s the perihelion advance has entered
the pantheon of high-precision confirmations of general
relativity. This was made possible by developments on
many fronts: high-precision radar tracking of planets and
spacecraft; improvements in our knowledge of planetary
and asteroid masses; precise measurements of the Earth-
Moon orbit using lunar laser ranging; development of
computer codes for obtaining precise orbits of the plan-
ets, major asteroids and spacecraft; and helioseismology,
which yielded credible values for the solar quadrupole
moment.
Another development was the adoption of the post-

Newtonian limit of general relativity and later of the
parametrized post-Newtonian (PPN) formalism [5–8] as
the foundation for analyzing solar system data [9, 10].
The PPN formalism provides, among other tools, a set
of N -body equations of motion, valid to the first post-
Newtonian (PN) order (O(v/c)2 beyond Newtonian the-
ory), expressed in terms of a set of dimensionless parame-
ters, γ, β, . . . whose values depend on the theory of grav-
ity being used. This made it possible to analyze all avail-
able solar system data, both historical and current, in a
uniform manner. Through such estimation procedures as
least-squares, one could obtain estimates for the values
and uncertainties in the parameters of the problem, such
as masses and orbit elements of planets, the quadrupole
moment of the Sun, and relativistic parameters such as γ
and β, and to understand correlations among them. The
main improvements to the estimates of γ came from data
in which the tracking signal passes close to the Sun, thus
experiencing the Shapiro time delay, which depends on
(1 + γ)/2. Such was the case for analyses that included
data from the 2003 cruise phase of the Cassini mission
to Saturn, which yielded γ − 1 = (2.1± 2.3)× 10−5 [11].
The parameter β is sensitive to the perihelion advance,
which depends on (2+2γ−β)/3, and to the “Nordtvedt”
effect in lunar laser ranging, which depends primarily on
4β − γ − 3. Recall that γ = β = 1 in general relativity
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(GR).

A major advance in measuring the parameters of
the perihelion advance was made by exploiting Mercury
MESSENGER. In 2011, MESSENGER became the first
spacecraft to orbit Mercury, and range and Doppler mea-
surements of the orbiter were made until the spacecraft
ended its mission in 2015 with a controlled crash on the
surface of Mercury. By 2013, MESSENGER data had
already led to dramatically improved knowledge of Mer-
cury’s orbit. Analyses of all the available data yielded
bounds on γ and β given by γ − 1 = (−0.3± 2.5)× 10−5

and β − 1 = (0.2 ± 2.5) × 10−5 [12–14]. The analyses
also yielded an estimate for the solar quadrupole mo-
ment J2 = (2.4± 0.2)× 10−7, consistent with the results
from helioseismology. More recent analyses yielded com-
parable results [15, 16].

Improved measurements of β, down to the level of parts
per million [17, 18], may be possible using data from the
joint European-Japanese BepiColombo project to place
two orbiters around Mercury [19], scheduled for launch in
late 2018. The purpose of this paper is to point out that,
at the level of parts per million, there is a new general rel-
ativistic effect on Mercury’s perihelion that has not been
calculated explicitly heretofore, although it is implicit in
the PPN N -body equations of motion mentioned above.
This is the effect of post-Newtonian “cross-terms” in the
equations of motion [20].

To understand PN cross terms, consider a hierarchi-
cal triple system, consisting of an inner binary system
(the Sun and Mercury in this case) and a distant third
body. At Newtonian order, the relative acceleration be-
tween Mercury and the Sun has terms of order Gm/r2

and Gm3r/R
3, where m and r are the mass and sepa-

ration of the Sun-Mercury system, and where we have
expanded the effect of the external body at distance R
and with mass m3 to only quadrupole order. In the post-
Newtonian approximation, each of these terms comes
from a potential Gm/r and Gm3r

2/R3, which then leads
to a dimensionless relativistic correction factor Gm/rc2

and Gm3r
2/R3c2. Here G and c are the gravitational

constant and the speed of light, respectively. Thus, in
addition to the two Newtonian acceleration terms and
the usual PN corrections to the acceleration within the
Sun-Mercury system, of order G2m2/r3c2, we also in-
clude “cross terms” between PN and third-body effects,
of the form (Gm/r2) × (Gm3r

2/R3c2) or (Gm3r/R
3) ×

(Gm/rc2), both of which scale as G2mm3/R
3c2. Thus

we are including the relativistic effect of the third body’s
potential on the Newtonian acceleration due to the Sun,
and the relativistic effect of the Sun’s potential on the
perturbing acceleration due to the third body. Rel-
ative to the dominant Newtonian acceleration by the
Sun, these cross terms have a dimensionless scale given
by Gm3r

2/R3c2 ∼ [(m3/m)(r/R)3][Gm/rc2]. Thus we
would expect on dimensional grounds that, if these cross-
term perturbations induce a perihelion advance for Mer-

cury, it would be of order Gm/rc2 ∼ 10−7 times the
Newtonian advance induced by the other planets. But
this advance is ∼ 530 as/cy, an order of magnitude larger
than the standard relativistic advance. Thus we might
expect the contribution of PN cross terms to be at the
level of parts per million of the GR effect, exactly the
regime that will be explored by BepiColombo.
Another PN cross-term that turns out to be rele-

vant is an interaction between the velocity v of Mer-
cury and the “gravitomagnetic (GM) field” generated
by the “mass current” of the moving third body. This
interaction is proportional to Gm3V3v/c

2R2. With
v ∼ (Gm/r)1/2 and V3 ∼ (Gm/R)1/2, this scales as
[(m3/m)(r/R)5/2][Gm/rc2] relative to the Newtonian so-
lar acceleration, and could lead to a contribution to the
perihelion advance of comparable size.
A detailed calculation, to be described in the next sec-

tion, confirms these expectations. For a third body in a
circular orbit that is coplanar with the Sun-Mercury sys-
tem, the advance per orbit of the perihelion of Mercury
is given by

∆̟ =
6πGm

c2p
+

3π

2

m3
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( a
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)3
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+
3π

4
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2
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,

(1)

where ̟ is the perihelion measured from a fixed refer-
ence direction, a and e are the semimajor axis and ec-
centricity of Mercury’s orbit and p = a(1− e2). The first
term is the standard general relativistic precession, the
second is the Newtonian precession induced by the third
body, and the third is the cross-term effect arising from
the coupling between the solar and third-body potentials.
The final term in Eq. (1) comes from the gravitomagnetic
cross term and actually causes a precession of the node
Ω, which must be included in the total orbit element ̟
(only the sum ̟ = ω+Ω is relevant for coplanar orbits).
This term has the same origin as the de Sitter precession
of the node of the Earth-Moon system induced by the
Sun, which has been measured using lunar laser ranging.
Since we worked to linear order in the perturbations

due to the third body, we can simply sum over all the
other planets, to obtain

∆̟ =
6πGm

c2p
+
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2
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. (2)

Inserting the relevant values for Mercury and the other
planets out to Saturn, we obtain 42.98 as/cy for the GR
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TABLE I: Contributions to Mercury’s perihelion advance.

Effect Formula Value relative

(rad/orbit) to GR

Solar oblateness 3πJ2(R/p)3 6.5× 10−4

Frame dragging −8πGJ/c2(Gmp3)1/2 4.7× 10−5

PN cross term see Eq. (2) 3.7× 10−6

GM/de Sitter see Eq. (2) 1.5× 10−6

2PN −6π(Gm/2c2p)2(10− e2) 6.6× 10−8

term, 384 as/cy for the planetary perturbation coefficient
and 4.2× 10−7 for the correction term inside the square
brackets. Thus the contribution of the cross-term per-
turbation at quadrupole order is 1.6 × 10−4 as/cy, or
3.7 × 10−6 of the main GR precession. Notice that the
planetary coefficient is smaller than the full planetary
effect of 530 as/cy because our quadrupole approxima-
tion underestimates the contributions from Venus and
Earth. The gravitomagnetic or de Sitter term contributes
6.4×10−5 as/cy or 1.5×10−6 of the main GR precession.

In principle, the calculations described here could be
carried to higher order in the expansion of the perturbing
fields of the planets.

Table I lists the important subdominant contributions
to Mercury’s perihelion advance. The solar oblateness
contribution assumes a value of J2 given by that inferred
from helioseismology or from analyses of MESSENGER
data. The uncertainty in J2 is around 10 percent. The
contribution of the dragging of inertial frames induced
by the solar angular momentum J is at the parts in 105

level, while the leading cross-term effects are at parts in
106. The second post-Newtonian (2PN) contribution is
significantly smaller, at parts in 108.

CALCULATIONS

We begin with the PN N -body equations of motion in
general relativity, as displayed in Eq. (9.127) of [21], Eq.
(6.78) of [7] or Eq. (6.79) of [8] (with PPN parameters
chosen to be those of GR), truncated to three bodies. We
further restrict to a heirarchical triple system consisting
of an inner binary with separation vector x12 and a dis-
tant third body of mass m3 at a distance R ≫ r. The
inner binary consists of a test mass (body 1) orbiting a
central object (body 2) of massm. Thus the outer body’s
orbit is unaffected by the test body, and we choose that
orbit to be circular and coplanar with the inner orbit. We
expand the vector x13 that joins the third body to the
test mass in powers of r/R, with r = |x12|, X = x23 and
R = |X|, retaining terms of order Gm3r/R

3 in the New-
tonian acceleration, corresponding to quadrupole order,

and keeping terms that scale as [G2m3m/c2R3](r/R)n in
the PN accelerations for any n ≤ 0. We exclude PN cross
terms with n > 0, as these will be progressively smaller
than the terms being kept. We also keep the conventional
PN terms generated by the central mass, which scale as
G2m2/c2r3. The resulting equation of motion has the
form

a = −Gmn

r2
− Gm3 r

R3
[n− 3(n ·N)N ] +

1

c2
[a]Binary

+
1

c2
[a]Cross +O

(

G2mm3r

c2R4

)

, (3)

where N = X/R, n = x12/r, and

[a]Binary =
Gmn

r2

(

4Gm

r
− v2

)

+
4Gmṙv

r2
,

[a]Cross = 2
G2mm3

R3

[

n− 6(n ·N)N + 3n(n ·N)2
]

+
Gm3r

R3
[4v {ṙ − 3(n ·N)(v ·N}

−v2 {n− 3(n ·N)N}
]

− Gm3

R2
[4v × (N × V3)− 3v(N · V3)] , (4)

where ṙ = n · v. There are additional PN cross terms
that scale with the values n = −5/2, −2 and −1; these
turn out to have no secular effect on the orbit elements
of the inner binary, so we do not display them (see Eq.
(4.7b) of [20] for the full set of terms).
We now treat all but the Newtonian two-body accel-

eration as perturbations, and define the osculating orbit
of the inner binary by (see Secs. 3.2 and 3.3 of [21] for
details)

r ≡ p(1 + e cos f)−1 ,

v ≡ ṙn+

√
Gmp

r
λ ,

n ≡ cos(̟ + f)eX + sin(̟ + f)eY ,

λ ≡ ∂n/∂f ,

df

dt
≡

√
Gmp

r2
− d̟

dt
, (5)

where f is the true anomaly and eX and eY are fixed
reference directions. We then find the components of the
perturbing accelerations along the n, λ and ĥ = n × λ

directions, and insert them into the Lagrange planetary
equations [20], which give equations for the evolution of
the orbit elements Xα of the general form

dXα

dt
= Qα(Xβ(t), t) . (6)

We then integrate these equations to obtain secular vari-
ations of the orbital elements.
However, in order to find the secular changes in the or-

bit elements induced by the cross terms in the equations
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of motion, we must carefully incorporate higher-order ef-
fects in the perturbation equations themselves. First,
the orbit elements p, e and ̟ vary periodically during
the orbit. Thus the PN-induced variations in these el-
ements must be inserted back into the Newtonian per-
turbation terms generated by the third body, and the
third-body induced variations must be inserted back into
the perturbation terms generated by PN effects. These
will produce cross-term contributions of the same order
as those coming directly from the equations of motion.
Second, it is conventional to identify secular variations
by integrating over a complete cycle of the true anomaly,
which runs from pericenter to pericenter. But in con-
verting from d/dt in the Lagrange planetary equations
to d/df , we must use the last of Eqs. (5) instead of the
conventional relation r2df/dt = (Gmp)1/2. The added
term comes from the fact that, while t is measured from
a fixed moment of time, f is measured from the pericen-
ter, which changes via ˙̟ . This added term, interacting
with the PN and Newtonian third-body terms, will also
generate cross-term effects between PN and third-body
terms. Finally, it is important to define consistently the
orbit-averaged elements and the “average-free” variations
of the elements over an orbital timescale; this is best car-
ried out using a standard “two-timescale” analysis (see
[22] and [23] for examples in a post-Newtonian context).
It is also conventional, in considering secular perturba-
tions in a many-body context, to average over the orbital
period of the third body. The result of such an analysis
is that, over one orbit, ∆p = ∆e = 0, and ∆̟ is given
by Eq. (1).

DISCUSSION

The PN cross-term effects on Mercury’s perihelion ad-
vance that we have pointed out arise from a subset of
the post-Newtonian terms in the N -body equations of
motion. Those equations (modified to include the PPN
parameters β and γ) as adopted by Moyer in the early
Jet Propulsion Laboratory (JPL) technical memoranda
[9, 10] are the basis for many modern ephemeris and
orbit-determination codes (see eg. [24]). However differ-
ent groups or space agencies adopt different implementa-
tions of the basic equations. If all ephemeris codes cur-
rently in use retain the summations over all the planets
in all post-Newtonian terms, then, by definition all the
relevant cross-term effects will be included, along with
many effects that are negligible (such as PN effects due
to the planets alone, of order G2m2

3r
2/c2R4). If there

are any truncations of the sums, then the code might
not properly account for the cross-term effects pointed
out here. The codes currently in use at JPL do include
all terms [25], but it is not known if this is universally
true; it would be important to verify this, particularly for
groups that will be involved in BepiColombo data anal-

ysis. Even if all such terms are included in the codes,
their existence and cross-correlations may play a role in
assessing the uncertainties in estimating γ and β, and in
measurements of the contributions to Mercury’s perihe-
lion advance arising from the solar quadrupole moment
and from frame dragging that will be carried out using
data from BepiColombo.

We assumed general relativity in deriving the cross
terms reported here; it is straightforward to generalize
those results to the PPN formalism (eg with γ, β, α1

and α2 arbitrary), and those results will be reported
elsewhere. But the present constraints on these parame-
ters are already so stringent that we do not expect PPN
cross-term effects to contribute directly to improving the
bounds on the PPN parameters.

Finally, at a purely pedagogical level, it is often stated
that the relativistic perihelion advance of Mercury is re-
ally only a test of the vacuum Schwarzschild solution (or
of the slow rotation limit of the vacuum Kerr solution, if
one wishes to include the frame-dragging effect), since all
the relativistic effects can be derived simply from those
metrics. If BebiColombo can reach a part per million
accuracy in measuring the perihelion advance, it will be
possible to put this idea to rest, since it will measure,
for the first time, relativistic effects on Mercury’s orbit
arising from the planets that surround it.
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