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The Holstein Model (HM) describes the interaction between fermions and a collection of local
(dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions,
giving rise to polaron and bipolaron formation. At higher densities, the phonons mediate collective
superconducting (SC) and charge density wave (CDW) phases. Quantum Monte Carlo (QMC)
simulations have considered both these limits, but have not yet focused on the physics of more
general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and
CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the
critical temperature Tcdw for CDW order, and also uncover several novel features of diagonal long
range order in the phase diagram, including a competition between charge patterns at momenta
q = (π, π) and q = (0, π) which lends insight into the relationship between Fermi surface nesting
and the wavevector at which charge order occurs. We also demonstrate SC order at half-filling in
situations where nonzero bandwidth sufficiently suppresses Tcdw.

PACS numbers: 71.10.Fd, 71.30.+h, 71.45.Lr, 74.20.-z, 02.70.Uu

Introduction: Quantum Monte Carlo (QMC) methods
have evolved into a powerful tool to understand
the physics of strongly interacting quantum systems.
Nevertheless, many qualitative questions remain largely
unaddressed concerning electron-phonon models. One
of the most prominent concerns is the origin of charge-
density wave (CDW) formation, especially in dimensions
greater than one. Increasingly attention has turned
to alternatives to the original Peierls picture[1]. Zhu
et al.[2, 3] have proposed at least three classes of
CDWs: (i) those associated with the Peierls instability
and Fermi Surface Nesting (FSN), typically in quasi-
1D materials; (ii) those driven by a momentum-
dependent electron-phonon coupling (EPC), gq, such
as the quasi-2D material NbSe2 [2, 4–9], for which a
CDW phase sets in at Tcdw = 33.5 K, even though
ARPES measurements do not show any sign of FSN[2];
and (iii) systems where electron correlations may drive
to charge modulation, a primary example being the
cuprates[10]. In addition to CDW physics, closely related
current issues in (high temperature) superconductivity
(SC) also invite a return to the study of electron-phonon
interactions. For instance, a momentum dependent EPC
is believed to be implicated in the dramatic increase in
the superconducting transition temperature, Tsc, of FeSe
monolayers on SrTiO2[11–13].

The Random Phase Approximation (RPA) criterion,
4g2q/ω(q) > 1 /χ0(q), where χ0(q) is the bare electronic
susceptibility, suggests that the shape of the bare phonon
dispersion, ω(q), should affect charge ordering, and hence
be important to the analysis of the above mentioned
second type of CDW. In view of this, here we explore a
new scenario in which phonon dispersion plays a primary
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FIG. 1. (Color online) Sketch of bare phonon dispersion (top)
and its resulting charge ordering (bottom) for (a) downward
curvature, (b) mixed curvature (saddle point at the origin),
and (c) upward curvature cases. The arrows on the latter
correspond to the (possible) hopping to any available sites
and emphasize the possibility of mobile pairs.

role in determining the CDW ordering wavevector and
critical temperature, and where SC can supplant diagonal
long range order. We extend QMC simulations[14] of a
2D square lattice Holstein Model (HM) to include phonon
dispersion[15–17]. For the HM on a bipartite lattice,
CDW order dominates over SC at commensurate fillings,
similarly to the dominance of antiferromagnetism over
pairing at half-filling in the Hubbard Hamiltonian[27, 28].
In that model, it is known[29] that off-diagonal long
range order (ODLRO) can be made more competitive
by adjusting the fermionic dispersion relation, e.g. by
introducing a next-nearest-neighbor hopping t′, or via
doping. Both of these serve to destroy the perfect nesting
of the square lattice Fermi surface. Here we adopt a
different approach, which is available in an electron-
phonon model – tuning the phonon dispersion while
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retaining the features of the bare electronic Fermi surface,
i.e. its FSN. The relevance of this approach can be
inferred by its effects on polaron formation, as showed
in a recent studies[16]. We examine in this Letter the
many-electron problem, with our results supporting the
picture that the shape of the phonon dispersion plays an
important role in the CDW (or SC) formation, i.e. being
responsible for enhancing or suppressing it. It is worth
noting that CDW formation can also be motivated at
strong coupling: large g causes pair formation, and then
t2/(g2/ω) provides an additional energy lowering when
doubly occupied and empty sites alternate. This is the
analog of the strong coupling picture of AF order in the
Hubbard model, where the exchange energy J ∼ t2/U
favors adjacent spins which are antiparallel.

Figure 1 presents the qualitative pictures behind our
key results: Bare phonon dispersion with (a) a downward
curvature in going from q = (0, 0) to q = (±π,±π) leads
to an enhancement of the CDW gap and increases Tcdw
at half-filling; (b) a mixed curvature (saddle point at the
origin, i.e. upward in x̂ and downward in ŷ directions)
can lead to striped charge order – further emphasizing
that charge order and FSN wavevectors do not have to be
identical; and (c) an upward curvature, which suppresses
the CDW gap and, for sufficiently large bandwidth, can
drive a CDW-SC transition at commensurate filling. We
emphasize that, in what follows, the dispersion will be
relatively small, far from the limit of introducing a zero
energy phonon mode which would trivially lead to CDW
formation. A weak curvature in the phonon dispersion
can shift the CDW wavevector away from the FSN vector,
and even replace CDW order by superconductivity.

Methodology: The Holstein model[30],

H1 =− t
∑
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∑
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is one of the simplest tight-binding descriptions of the
electron-phonon interaction. A single electronic band,
with fermionic creation (destruction) operators at site i,

d†i,σ (di,σ), couples to independent oscillator degrees of

freedom X̂i, P̂ i. We consider here a square lattice with
periodic boundary conditions, nearest-neighbor (NN)
electron hopping t = 1 (to set the scale of energy),
chemical potential µ, electron-phonon coupling λ, and
local phonon frequency ω1.

We generalize Eq. (1) to H = H1 + H2, to include
a coupling of strenght ω2 between NN displacements
X̂i, X̂j, with

H2 =
ω2

2

2

∑
〈i,j〉

(
X̂i ± X̂j

)2
. (2)
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FIG. 2. (Color online) Dependence of electronic density
ρ on chemical potential µ̃, fixing λD = 0.25, ω0/t = 1
and ∆ω/ω0 = 0 (black squares), 0.04 (red triangles), 0.08
(orange diamonds) and -0.08 (blue circles). The energy scale
is fixed for all cases, with β ≈ 5

3
βc (i.e. β = 10, 12, 15

and 8, respectively). Negative and positive signs for the
bandwidth ∆ω correspond to ω(π, π) < ω0 and ω(π, π) > ω0,
respectively. Inset: Inverse critical temperature as a function
of ∆ω. Here, and in all subsequent figures, when not shown,
error bars are smaller than the symbol size.

We will allow for both signs of this intersite term, i.e. for
cases where the sign between neighboring sites 〈i, j〉 in
the x̂ and ŷ directions are equal or different. Physically,
the minus sign is the more natural one: forces on atoms
depend on their relative displacement. On the other
hand, as we discuss below, the positive sign yields a mode
with a downward bending momentum 0 to π, the more
typical behavior for high frequency optical modes.

The inclusion of NN coupling ω2 6= 0 leads to a finite
phonon bandwidth ∆ω. In the absence of the electron-
phonon coupling, the quadratic bosonic Hamiltonian can
be solved exactly, leading to a bare phonon dispersion

relation, ω(q) =
√
ω 2
1 + 2ω 2

2

[
2± cos(qx)± cos(qy)

]
.

Positive signs reduce ω(π, π), making it energetically less
costly to create a phonon at the M point, while negative
signs favor modes at the zone center Γ point, ω(0, 0).
A mixed sign breaks rotational symmetry, producing a
phonon in the X (or X ′) point, ω(π, 0) [or ω(0, π)]. As
depicted in Fig. 1, these three cases are considered in this
Letter.

Our discussion will benefit from the introduction of the
following dimensionless parameters: (i) the adiabaticity
ratio ω0/t ≡ ω(0, 0)/t; (ii) the phonon bandwidth
∆ω/ω0, with ∆ω ≡ max

[
ω(q)

]
− min

[
ω(q)

]
; and (iii)

the electron-phonon coupling,

λD =
1

W

1

N

∑
q

λ2

ω2(q)
, (3)

which is the polaron binding energy, in units of half
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FIG. 3. (Color online) CDW structure factor as a function of
phonon bandwidth for the mixed curvature dispersion case,
i.e. upward in x̂ and downward in ŷ directions. A phase
transition from staggered to striped order occurs at around
∆ω/ω0 = 0.30, independent of ω0/t (inset).

electronic bandwidth. Here N = L2 is the number
of sites, while the electronic bandwidth is W = 8t.
Through an appropriate particle-hole transformation and
shift of the phonon origin, one can show that a half-filled
electronic band occurs at µ = −λ2/ω2

0 , for any dispersion
relation ω(q). We therefore introduce µ̃ = µ+ λ2/ω2

0 , so
that ρ = 1 at µ̃ = 0. In what follows, the Hamiltonian
parameters λ, ω1 and ω2 are adjusted in order to fix the
dimensionless ratios, ω0/t, ∆ω/ω0 and λD, with ρ = 1.
We consider here ω0/t = 1, unless otherwise indicated,
and only small values of ∆ω/ω0, so that the bare phonon
dispersion retains its nearly flat, optical form.

We examine the features of this generalized HM
using Determinant Quantum Monte Carlo (DQMC)
[18–21]; see the Supplemental Material for more
details. The nature of charge ordering is investigated
by the equal-time charge-density structure factor,
S(q) = 1

N

∑
i,j e

iq·(i−j) 〈ni nj 〉, while pairing features
are analyzed by the s-wave superconducting pair

susceptibility Ps = 1
N

∫ β
0

dτ 〈∆(τ)∆†(0) + H.c.〉, with

∆(τ) =
∑

i ci↓(τ)ci↑(τ). [31]
Before presenting our main results on the effects of

phonon dispersion on charge and pairing order, we
revisited the dispersionless (ω2 = 0) HM. It is worth
mentioning that only recently accurate results for the
critical temperature have been obtained[32–34], with
its precise determination being provided via finite size
scaling. Since the HM exhibits a finite temperature phase
transition with a discrete order parameter, this transition
should be in the universality class of the 2D Ising model.
Hence,

S(π, π) = L2−ηf(L(β − βc)ν), (4)

with η = 1/4 and ν = 1. For instance, fixing λD = 0.25,
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FIG. 4. (Color online) Data collapse of the DQMC results of
S(0, π) for the mixed curvature (saddle point) case, fixing the
2D Ising critical exponents. Inset: Charge structure factor as
function of β. Here ∆ω/ω0 = 0.312.

ω0/t = 1, at half-filling, we estimate βc = 6.0 ± 0.1; see
Supplemental Material. This value of βc is somewhat
lower than the earliest DQMC results[20, 24], but is in
agreement with more recent simulations[32, 33], and will
be used as a benchmark when analyzing the effects of
phonon dispersion.

Effect of Dispersion on Charge Correlations: We first
consider the case in which Eq. (2) has the same sign for
both spatial directions. A positive coupling (X̂i + X̂j)
in Eq. (2) corresponds to ω(π, π) < ω0 and is expected
to enhance CDW order. On the other hand, a negative
coupling leads to ω(π, π) > ω0 and charge order at
the M point. These two cases correspond to Fig. 1 (a)
and (c), respectively. We define ∆ω = ω(π, π) − ω0,
i.e. ∆ω > 0 (< 0) for upward (downward) phonon
dispersion. The effect of ω2 6= 0 is quantified in Fig. 2,
which shows the charge gap induced in ρ(µ̃) by the
electron-phonon coupling [35]. This CDW gap grows or
shrinks with the phonon bandwidth, depending on the
shape its dispersion, i.e. if it is downward or upward,
respectively. As presented in the inset of Fig. 2, this
behavior is accompanied by changes in βc = 1/Tcdw,
obtained by the scaling analysis of S(π, π) using Eq. (4);
see, e.g., the Supplemental Material. It is remarkable
that Tcdw can decrease by a factor of two with a relatively
small ∆ω/ω0 ≈ 0.1.

A mixed sign, in which the phonon dispersion terms in
Eq. (2) take the form X̂i−X̂j for j = i+x̂ and X̂i+X̂j for
j = i+ŷ, results in a phonon spectrum with a saddle point
at q = (0, 0), with mimima at q = (0,±π) and maxima
at q = (±π, 0), see, e.g. Fig. 1 (b). Figure 3 shows the
charge structure factors for checkerboard [q = (π, π)] and
striped [q = (0, π)], order as a function of the phonon
bandwidth ∆ω = ω(π, 0) − ω(0, π), for fixed λD = 0.25,
ω0/t = 1, β = 10 and L = 8. In contrast to the case
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of identical signs, for which a small ∆ω/ω0 ∼ 0.1 had a
large effect on the gap and Tcdw, charge correlations here
are initially almost independent of ∆ω up to ∆ω/ω0 ∼
0.25. However, at ∆ω/ω0 ∼ 0.30 a strong suppression
of S(π, π) occurs, with a corresponding rapid rise in
S(0, π). This transition point is almost independent of
ω0/t, as displayed in Fig. 3 (inset). It is expected that
this phase transition would be first order, due to different
symmetries associated to the ground states. One should
notice that the bare fermion dispersion relation is of
course independent of ∆ω, i.e. it retains the nesting at
(π, π) and the van-Hove singularity at ρ = 1. The onset
of striped charge order is driven by changes in the phonon
dispersion, not by changes in the FSN.

We can also obtain the transition temperature for the
striped phase. The inset of Fig. 4 shows raw data for
S(0, π) on different lattice sizes as a function of β, for
∆ω/ω0 = 0.312, slightly after entrying into the striped
phase. The corresponding scaling (data collapse) is
presented in Fig. 4, indicating a finite temperature phase
transition at βc ≈ 7.0.

This striped phase, with qcdw = (0, π) 6= 2kF ,
provides an explicit and quantitative illustration of a
non-Peierls CDW instability. Recent experiments have
exposed a similar behavior in a variety of materials,
i.e. a charge order arising away from 2kF and whose
origin cannot be related to FSN, such as in the quasi-2D
materials NbSe2, CeTe3, Cr, and U, and also in one-
dimensional model systems like Au/Ge(001) [2, 7, 36–
39]. In particular, NbSe2 does not exhibit FSN or any
divergence in the electronic susceptibility[8], neither a
metal-insulator transition. Nevertheless, CDW order sets
in at Tcdw = 33.5 K. The appearance of this phase,
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FIG. 6. (Color online) s-wave pair susceptibility as function
of the inverse of temperature for ∆ω/ω0 = 0.1, ω0/t = 4 and
λD = 0.25. Inset: the data collapse of the raw DQMC results
by Kosterlitz-Thouless scaling for β ≥ 16 (and L =8, 10 and
12). The full lines are just guide to the eye.

outside the usual Peierls paradigm, is then instead
ascribed to strong EPC[2, 3]. As noted earlier, the RPA
criterion for CDW order suggests an intimate connection
between momentum dependent gq and phonon dispersion
ω(q), so that the results of Fig. 4 provide a confirmation
that additional momentum structure plays a crucial role
in the CDW ordering wave vector. In the Supplemental
Material we discuss possible differences between gq and
ω(q), which lend some additional complexity.

Effect of Dispersion on Pairing: We now turn to SC
order. As noted earlier, it is uncommon for ODLRO
to appear in fermionic models at half-filling on bipartite
geometries like the square lattice, which instead favor
diagonal order. Nevertheless, the data of Fig. 2 show a
rise in βc with the increased energetic cost for (π, π)-
CDW formation from the upward phonon dispersion. A
natural question is whether that cost eventually becomes
prohibitive, opening the door to SC.

To address this, we increase the SC scale of energy [40]
and consider a phonon frequency ω0/t = 4, working with
an upward phonon dispersion, as displayed in Fig. 1 (c).
For this frequency, the dispersionless HM (ω2 = 0)
exhibits Tcdw ∼ 1/13, without SC; see Supplemental
Material. However, for the dispersive case, S(π, π)
is strongly suppressed at ∆ω/ω0 & 0.05, while Ps is
enhanced and grows with lattice size, as displayed in
Fig. 5, for fixed β = 16. That is, a CDW-SC transition
should occur when ∆ω/ω0 increases. As presented in
Fig. 6, at ∆ω/ω0 = 0.10, for instance, Ps grows with
lattice size for β & 12. In order to establish quasi-long-
range order for this case, the appropriate scaling ansatz is
a Kosterlitz-Thouless (KT) behavior, Ps = L2−ηf

(
L/ξ),

with η = 1/4 and ξ ∼ exp

[
A

(T−Tc)1/2

]
, T → T+

c . The
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inset of Fig. 6 displays the KT scaling of the Ps raw data
for β ≥ 16. Here, the parameters A = 0.2 and Tc = 1/26
yield the best data collapse. This result provides strong
evidence for the onset of SC at half-filling in the HM,
when phonon dispersion is taken into account; see also
the Supplemental Material. We should mention that
recent results[41–48] have also examined the onset of SC
in the HM, but they have not considered the effects of
phonon dispersion. In the Holstein Hamiltonian, electron
pairing is phonon-induced, as described in Eliasberg-
Migdal theory. [49, 50]

Conclusions: This paper has provided a significant
extension of QMC simulations of electron-phonon
Hamiltonians by evaluating the effects of phonon
dispersion on charge and pairing order in the Holstein
model. The results offer several interesting features,
including a CDW-SC transition at half-filling and
transitions between CDW phases at different ordering
momenta, which can be tuned by a weak bare phonon
dispersion. Our findings of non-Peierls CDW phase,
despite the existence of FSN in the bare electron
dispersion, is of particular interest, given recent work
questioning the traditional view of CDW formation
[2, 7, 36–39]. In view of these, our results present further
insight into the (complex) nature of CDW formation,
exhibiting a new avenue to understand and, ultimately,
to control it.
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