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We report on experimentally measured light shifts of superconducting flux qubits deep-strongly
coupled to LC oscillators, where the coupling constants are comparable to the qubit and oscillator
resonance frequencies. By using two-tone spectroscopy, the energies of the six lowest levels of each
circuit are determined. We find huge Lamb shifts that exceed 90% of the bare qubit frequencies and
inversions of the qubits’ ground and excited states when there are a finite number of photons in the
oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi
model.

According to quantum theory, the vacuum electromag-
netic field has “half photon” fluctuations, which cause
several physical phenomena such as the Lamb shift [1]. A
cavity can enhance the interaction between the atom and
the electromagnetic field inside the cavity, and enables
more precise measurements on the influence of the vac-
uum. Cavity/circuit-quantum electrodynamics (QED)
systems are well described by the Jaynes-Cummings
Hamiltonian [2, 3]. In the strong coupling regime, when
the cavity’s resonance frequency ω is on resonance with
the atom’s transition frequency ∆, the vacuum Rabi
splitting [4–6] and oscillation [7, 8] have been observed.
In the off-resonance case, the Lamb shift [9–11] caused
by the vacuum fluctuations, and the ac-Stark shift pro-
portional to the photon number in the cavity, were ob-
served [10–13]. In the so-called ultrastrong coupling
regime [14, 15], where the coupling constant g becomes
around 10% of ∆ and ω, and the deep-strong-coupling
regime [16, 17], where g is comparable to or larger than
∆ and ω, the rotating-wave approximation used in the
Jaynes-Cummings Hamiltonian breaks down and the sys-
tem should be described by the quantum Rabi Hamilto-
nian [18–20]. In these regimes, the light shifts of an atom
could non-monotonously change as g increases, and the
amount of the shift is not proportional to the photon
number in the cavity [21, 22].

In this work, to study the light shift in the case of
g ∼ ω, we investigated qubit-oscillator circuits that
each comprises a superconducting flux qubit [23] and
an LC oscillator inductively coupled to each other by
sharing a loop of Josephson junctions that serves as a
coupler [Figs. 1(a) and (c)]. By using two-tone spec-
troscopy [24, 25], energies of the six lowest energy eigen-
states were measured, and the photon-number-dependent

qubit frequencies were evaluated. We find Lamb shifts
over 90% of the bare qubit frequency and inversions of
the qubit’s ground and the excited states when there are
a finite number of photons in the oscillator.

The qubit-oscillator circuit is described by the Hamil-
tonian

Ĥ = −~
2

(∆σ̂x + εσ̂z) + ~ωâ†â+ ~gσ̂z
(
â+ â†

)
. (1)

The first two terms represent the energy of the flux qubit
written in the basis of two states with persistent currents
flowing in opposite directions around the qubit loop, |	〉q
and |�〉q. The operators σ̂x,z are the standard Pauli op-
erators. The parameters ~∆ and ~ε are the tunnel split-
ting and the energy bias between |	〉q and |�〉q, where
~ε can be controlled by the flux bias through the qubit
loop Φq. The third term represents the energy of the LC

oscillator, where ω = 1/
√

(L0 + Lc)C [see Fig. 1(a)] is
the resonance frequency, and â† and â are the creation
and annihilation operators, respectively. The fourth term
represents the coupling energy.

At ε = 0, the Hamiltonian in Eq. (1) is equivalent to
that of the quantum Rabi model ĤRabi. In the limit
∆ � ω, the energy eigenstates are well described by
Schrödinger-cat-like entangled states between persistent-
current states of the qubit and displaced Fock states of
the oscillator D̂(±α)|n〉o [21, 22]:

|gn〉 '
|	〉q ⊗ D̂(− g

ω )|n〉o + |�〉q ⊗ D̂( g
ω )|n〉o√

2
,

|en〉 '
|	〉q ⊗ D̂(− g

ω )|n〉o − |�〉q ⊗ D̂( g
ω )|n〉o√

2
. (2)

Here, D̂(α) = exp(αâ† − α∗â) is the displacement op-
erator, and α is the amount of the displacement. The
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FIG. 1. (a) Circuit diagram. A superconducting flux qubit
(red and black) and a superconducting LC oscillator (blue
and black) are inductively coupled to each other by sharing
an inductance (black). (b), (c) Scanning microscope images
of the qubit and the shared inductance located at the orange
rectangle in diagram (a). Josephson junctions are represented
by magenta rectangles. The shared inductance is a supercon-
ducting lead (b) or a loop of Josephson junctions (c). (d) The
diagram of the six lowest energy-levels of a qubit-oscillator cir-
cuit. The energy eigenstates are expressed as |in〉 (i = g, e
and n = 0, 1, 2, · · · ), which indicates that the qubit is in
“g” the ground or “e” the excited state and the number of
real photons in the oscillator is n. The arrows indicate tran-
sition frequencies between energy eigenstates and also mean
that the transitions are allowed. Here, ∆n (n = 0, 1, 2) is the
photon-number-dependent qubit frequency.

energy eigenstates on the left-hand side are expressed as
|in〉 (i= g, e), where “g” and “e” denote, respectively, the
ground and excited states of the qubit and n the number
of real photons in the oscillator. On the right-hand side,
|n〉o denotes the oscillator’s n-photon Fock state. Note
that the displaced vacuum state D̂(α)|0〉o is the coherent
state |α〉o = exp(−|α|2/2)

∑∞
n=0 α

n|n〉o/
√
n.

The photon-number-dependent qubit frequency
∆n(g/ω) ≡ ωen − ωgn is defined as the energy difference
between the energy eigenstates |gn〉 and |en〉, and it can
be expressed as [see the solid lines in Fig. 4]:

∆n(g/ω) = 〈en|ĤRabi|en〉 − 〈gn|ĤRabi|gn〉
' ∆[o〈n|D̂†(−g/ω)D̂(g/ω)|n〉o]

= ∆ exp(−2g2/ω2)Ln(4g2/ω2). (3)

Here, Ln is a Laguerre polynomial; L0(x) = 1, L1(x) =
1 − x, L2(x) = (x2 − 4x + 2)/2, and so on. The differ-
ence between ∆n and the bare qubit frequency ∆ can
be considered as the n-photon ac-Stark shifts |∆n −∆|.
In particular, |∆0 −∆| is referred to as the Lamb shift.
Note that the Bloch-Siegert shift [26, 27], the contribu-
tion from the counter-rotating terms, is included in the
n-photon ac-Stark shifts. Since L0 = 1, a considerable
Lamb shift is expected when g becomes comparable to ω.
A similar suppression of transition frequencies because of
coupling to other degrees of freedom is well known in po-

laron physics and other fields. For example such an effect
was recently discussed for an Andreev-level qubit [28].
Considering that Ln has n zeros, i.e. points where Ln(x)
is equal to zero, ∆n(x) also has n zeros, and hence, in
general alternates between positive and negative values.
In other words, the qubit’s ground and excited states
exchange their roles everytime when ∆n = 0. The bare
qubit frequency ∆ is the tunnel energy between the states
|	〉q and |�〉q. Taking either one of these two states and
a finite value of g, the oscillator is populated by virtual
photons even in the ground state, and the virtual pho-
ton states for the qubit states |	〉q and |�〉q are different
from each other. As a result, the qubit has to “drag” the
oscillator every time it flips its state, which can be seen
as an effective reduction of ∆ by a factor that is deter-
mined by the overlap integral between the interaction-
caused displaced n-photon Fock states of the oscillator
[29] as described by the second line of Eq. (3). One way
to understand negative values of ∆n is to think of them
as describing a situation where the anti-bonding state
of |	〉q and |�〉q is more stable than the bonding state.

Note that here the displaced states D̂(±g/ω)|0〉o contain
only virtual photons while the states D̂(±g/ω)|n〉o for
n ≥ 1 contain a mixture of real and virtual photons.

Although Eqs. (2) and (3) are not exact for general
values of the circuit parameters, they remain reasonably
good approximations as long as ∆ < ω. Furthermore, the
symmetry of ĤRabi is independent of the circuit param-
eters, which means that certain transitions will remain
forbidden even if the corresponding states do not have
simple forms. These two considerations allow us to eas-
ily identify the energies of the different eigenstates from
the experimental spectra [29].

To determine the parameters of the qubit-oscillator cir-
cuits (∆, ω, and g), spectroscopy was performed by mea-
suring the transmission spectrum through the transmis-
sion line that is inductively coupled to the LC oscillator
[Fig. 1(a)]. In total, nine sets of parameters (A–I in Ta-
ble I) in five circuits were evaluated. The shared induc-
tance of the circuit for set A is a superconducting lead
[Fig. 1(b)], while that of the circuits for sets B–I is a loop
of Josephson junctions [Fig. 1(c)], where eight flux bias
points in four circuits were used [29]. Therefore, much
larger g is expected for sets B–I. When the frequency of
the probe signal ωp matches the frequency ωkl of a tran-
sition |k〉 → |l〉, where |0〉 stands for the ground state and
|k〉 with k ≥ 1 stands for the kth excited state of the cou-
pled circuit, the transmission amplitude decreases, pro-
vided that the transition matrix element 〈k|(â+ â†)|l〉 is
not 0. Note that for nonzero values of ε, we have labeled
the energy eigenstates using a single integer k instead
of the label |in〉 used above. Figure 2 shows the ampli-

tudes of the transmission spectra |Smeas
21 (ε, ωp)/Sbg

21 (ωp)|
for sets A and H. Here, ωp is the probe frequency, and

Smeas
21 (ε, ωp) and Sbg

21 (ωp) are respectively measured and
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FIG. 2. Measured transmission spectra for two qubit-
oscillator circuits as functions of the qubit’s energy bias ε
and probe frequency ωp. The color scheme is chosen such
that the lowest point in each spectrum is red and the high-
est point is blue. The right panels show the transition fre-
quencies calculated from the Hamiltonian to fit experimental
data. The black, gray, orange, pink, and red lines correspond
to the transitions |0〉 → |1〉, |0〉 → |2〉, |0〉 → |3〉, |1〉 → |2〉,
and |1〉 → |3〉, respectively. The parameters are obtained as
(a) ∆/2π = 1.246 GHz, ω/2π = 6.365 GHz, and g/2π =
0.42 GHz corresponding to set A; (b) ∆/2π = 1.68 GHz,
ω/2π = 6.345 GHz, and g/2π = 7.27 GHz corresponding to
set H.

background transmission coefficients [29].

The parameters are obtained from fitting the exper-
imentally measured resonance frequencies to those nu-
merically calculated by diagonalizing Ĥ with ∆, ω and
g treated as fitting parameters. In Fig. 2, the right pan-
els show the calculated transition frequencies superim-
posed on the measured spectra. In Fig. 2(a), one can
see the splitting of |0〉 → |2〉 and |1〉 → |3〉 transition
frequencies around ε = 0, known as the qubit-state-
dependent frequency shifts of the oscillator. From the fit-
ting, the parameters are obtained as ∆/2π = 1.246 GHz,
ω/2π = 6.365 GHz, and g/2π = 0.42 GHz. The spectrum
shown in Fig. 2(b) looks qualitatively different from that
in (a) as discussed in Ref. [17]. The parameters are ob-
tained as ∆/2π = 1.68 GHz, ω/2π = 6.345 GHz, and
g/2π = 7.27 GHz. Here, g is larger than both ∆ and ω,
indicating that the circuit is in the deep-strong-coupling
regime [g & max(ω,

√
∆ω/2)] [21, 30, 31]. The parame-

ters from all the sets are summarized in Table I.

To obtain the photon-number-dependent qubit fre-
quency ∆n (n = 0, 1, 2), at least five transition fre-
quencies out of seven allowed transitions [Fig. 1(d)] are
necessary. However, in each spectrum at ε = 0, we see
only two signals at frequencies ωg0,g1 and ωe0,e1 respec-
tively corresponding to the transitions |g0〉 → |g1〉 and
|e0〉 → |e1〉, which were also observed in our previous

∆

2π

ω

2π

g

2π

∆0

2π

∆1

2π

∆2

2π

A 1.246 6.365 0.42 1.236 1.215

(1.235) (1.213)

B 1.01 6.296 5.41 0.233 −0.452 −0.13

(0.229) (−0.448) (−0.123)

C 0.92 6.288 5.59 0.193 −0.412 −0.062

(0.189) (−0.410) (−0.059)

D 3.93 5.282 5.28 0.54 −1.512 0.56

(0.539) (−1.503) (0.624)

E 4.88 5.230 5.37 0.607 −1.746 0.906

(0.607) (−1.741) (1.018)

F 4.71 5.220 5.46 0.538 −1.642 1.005

(0.542) (−1.641) (1.087)

G 3.53 5.263 5.58 0.375 −1.255 0.8

(0.379) (−1.244) (0.834)

H 1.68 6.345 7.27 0.127 −0.518 0.5

(0.122) (−0.514) (0.523)

I 1.61 6.335 7.48 0.099 −0.458 0.493

(0.099) (−0.451) (0.532)

TABLE I. Parameters of qubit-oscillator circuits in GHz. ∆,
ω, and g are obtained from the (single-tone) transmission
spectra. The numbers for ∆n (n = 0, 1, 2) in the upper
line for each data set are obtained from two-tone transmis-
sion spectra, while those in the lower line (i.e. those between

parentheses) are numerically calculated values using ĤRabi

and the parameters ∆, ω, and g.

experiments [16, 17]. There are two main reasons behind
this limitation on single-tone spectroscopy, where only a
single-frequency weak probe signal is applied to the cir-
cuit. First, only transition frequencies in the range of
the measurement setup (in our case 4 to 8 GHz) can be
measured. Second, the signal from transitions that do
not start from the lowest two energy levels will be weak
because of the small thermal population of higher energy
levels (in our case the thermal population decreases by
two orders of magnitude for each step up in the value of
n).

To access transitions other than |g0〉 → |g1〉 and
|e0〉 → |e1〉, two-tone spectroscopy was used, where a
drive signal with frequency ωd is applied while the trans-
mission of a probe signal with frequency ωp around the
frequency ωg0,g1 or ωe0,e1 is measured. When ωd is equal
to the frequency of an allowed transition involving at
least one of the states |g0〉, |g1〉, |e0〉, and |e1〉, an Autler-
Townes splitting [32] takes place and is observed in the
probe transmission signal. Figure 3 shows the measured
two-tone transmission spectra from set H. An avoided
crossing between a horizontal line and a diagonal line [29]
is observed in each panel. Interestingly, the slope of the
diagonal line is ∂ωp/∂ωd = −1 for panels (a) and (b), and
+1 for panel (c), which indicates that the absorption of
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FIG. 3. (left) Measured two-tone transmission spectra as
functions of drive frequency ωd and probe frequency ωp. The
color scheme is chosen such that the lowest point in each spec-
trum is red and the highest point is blue. The white dotted
lines are calculated transition frequencies considering dressed
states due to the drive signals. The right panels show the
energy-level diagrams. The thin green arrows indicate transi-
tions scanned by the probe signal, while thick magenta arrows
indicate transitions scanned by drive signals.

one probe photon is accompanied by the absorption of
one photon from the drive field in panels (a) and (b)
and the emission of one photon to the drive field in panel
(c). Together with the frequencies numerically calculated
from ĤRabi, the corresponding transitions are identified
as shown in the right-hand side of each spectrum. The
spectrum in panel (c) demonstrates that the energy of
|g1〉 is higher than that of |e1〉 and hence ∆1 is negative.
In other words, the qubit’s energy levels are inverted.

Moreover, from these three two-tone transmission
spectra, five transition frequencies, ωg0,g1, ωg0,g2, ωe0,e1,
ωe0,e2, and ωg0,e1, can be evaluated; In panel (a), the
horizontal line corresponds to a one-photon resonance,
ωp = ωg0,g1, whereas the diagonal line corresponds to
a two-photon resonance, ωp = ωg0,g2 − ωd. For panel
(b), similarly, the horizontal line is at ωp = ωe0,e1 and
the diagonal line is at ωp = ωe0,e2 − ωd. For panel (c),
the horizontal line is at ωp = ωg0,g1 and the diagonal
line is at ωp = ωg0,e1 + ωd. From these five transition
frequencies, all the eigenenergies up to the fifth-excited
state can be determined, up to an overall energy shift.
One thing is worth emphasizing here. In the two-tone
spectroscopy of a deep-strongly-coupled qubit-oscillator
circuit, the states of the qubit are doubly dressed: one
is the conventional dressing by the classical drive field
while the other is in the quantum regime due to deep-
strong coupling to the oscillator, where the oscillator’s
states are displaced. The experimental results demon-
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FIG. 4. Photon-number-dependent normalized qubit frequen-
cies ∆n/∆ as functions of g/ω. The parameters ∆, ω, and g
are obtained from the (single-tone) transmission spectra. The
black, red, and blue solid circles are respectively the qubit fre-
quencies ∆0, ∆1, and ∆2 obtained from the two-tone trans-
mission spectra. The solid lines are ∆n obtained from Eq. (3).

strate that the two kinds of dressed states coexist.

From Eq. (3), the normalized photon-number-
dependent qubit frequencies ∆n/∆ are expected to de-
pend solely on the normalized coupling constant g/ω. We
therefore plot ∆n/∆ as functions of g/ω for all nine pa-
rameter sets together (Fig. 4). The parameters ∆, ω,
and g are obtained from the transmission spectra. These
results demonstrate huge Lamb shifts |∆0 −∆|, some of
them exceed 90% of the bare qubit frequencies ∆. These
results also demonstrate that 1-photon and 2-photon ac-
Stark shifts are so large that ∆1 and ∆2 change their
signs depending on g/ω. The solid lines are theoretically
predicted values given by Eq. (3). Table I shows a com-
parison between the measured and the numerically calcu-
lated ∆n [29] using ĤRabi and the parameters ∆, ω, and
g. In many circuits, the measured ∆2 is smaller than
the numerically calculated one, while the agreement of
∆0 and ∆1 are good, with the deviations being at most
10 MHz. Since ∆2 given by Eq. (3) is an approxima-
tion that becomes exact in the limit ∆/ω → 0 while the
numerically calculated ∆2 is based on exact ĤRabi for
any set of parameters, the agreement of ∆2 in Fig. 4 is
a coincidence. In this way, our results can be used to
check how well the flux qubit-LC oscillator circuits re-
alize a system that is described by the quantum Rabi
model Hamiltonian, which is the basis for several impor-
tant applications, e.g. ultrafast gates [33] and quantum
switches [34]. A possible source of the deviation in ∆2

is higher energy levels of the flux qubit. As discussed in
Ref. [17], the second or higher excited states can shift the
energy levels of the qubit-oscillator circuit, even though
there is an energy difference of at least 20 GHz between
the first and the second excited states. Consideration of
higher energy levels is necessary to identify the origin of
the deviation in ∆2.

In conclusion, we have used two-tone spectroscopy to
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study deep-strongly-coupled flux qubit-LC oscillator cir-
cuits. We have determined the energies of the six low-
est energy eigenstates of each circuit and evaluated the
photon-number-dependent qubit energy shifts. We have
found Lamb shifts that exceed 90% of the bare qubit
frequency, and inversions of the qubit’s ground and ex-
cited states caused by the 1-photon and 2-photon ac-
Stark shifts. The results agree with the quantum Rabi
model, giving further support to the validity of the quan-
tum Rabi model in describing these circuits in the deep-
strong-coupling regime.
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